free full text journal articles: neuroscience


Advertisement


 

Google
 
Web www.neurotransmitter.net

Recent Articles in BMC Neuroscience

Visalli V, Muscoli C, Sacco I, Sculco F, Palma E, Costa N, Colica C, Rotiroti D, Mollace V
N-acetylcysteine prevents HIV gp 120-related damage of human cultured astrocytes: correlation with glutamine synthase dysfunction.
BMC Neurosci. 2007 Dec 6;8(1):106.
ABSTRACT: BACKGROUND: HIV envelope gp 120 glycoprotein is released during active HIV infection of brain macrophages thereby generating inflammation and oxidative stress which contribute to the development of the AIDS-Dementia Complex (ADC). Gp120 has also been found capable to generate excitotoxic effect on brain tissue via enhancement of glutamatergic neurotransmission, leading to neuronal and astroglial damage, though the mechanism is still to be better understood. Here we investigated on the effect of N-acetylcysteine (NAC), on gp120-induced damage in human cultured astroglial cells and the possible contribution of gp120-related reacting oxygen species (ROS) in the imbalanced activity of glutamine synthase (GS), the enzyme that metabolizes glutamate into glutamine within astroglial cells playing a neuroprotective role in brain disorders. RESULTS: Incubation of Lipari human cultured astroglial cells with gp 120 (0.1-10 nM) produced a significant reduction of astroglial cell viability and apoptosis as evaluated by TUNEL reaction and flow cytometric analysis (FACS). This effect was accompanied by lipid peroxidation as detected by means of malondialdehyde assay (MDA). In addition, gp 120 reduced both glutamine concentration in astroglial cell supernatants and GS expression as detected by immunocytochemistry and western blotting analysis. Pre-treatment of cells with NAC (0.5-5 mM), dose-dependently antagonised astroglial apoptotic cell death induced by gp 120, an effect accompanied by significant attenuation of MDA accumulation. Furthermore, both effects were closely associated with a significant recovery of glutamine levels in cell supernatants and by GS expression, thus suggesting that overproduction of free radicals might contribute in gp 120-related dysfunction of GS in astroglial cells. CONCLUSIONS: In conclusion, the present experiments demonstrate that gp 120 is toxic to astroglial cells, an effect accompanied by lipid peroxidation and by altered glutamine release. All the effects of gp120 on astroglial cells were counteracted by NAC thus suggesting a novel and potentially useful approach in the treatment of glutammatergic disorders found in HAD patients. [Abstract/Link to Full Text]

Schneider M, Spanagel R, Zhang SJ, Bading H, Klugmann M
Adeno-associated virus (AAV)-mediated suppression of Ca2+/calmodulin kinase IV activity in the nucleus accumbens modulates emotional behaviour in mice.
BMC Neurosci. 2007 Dec 3;8(1):105.
ABSTRACT: BACKGROUND: Calcium/calmodulin-dependent protein kinase IV (CaMKIV) controls activity-dependent gene transcription by regulating the activity of the cyclic AMP response element binding protein (CREB). This signaling pathway is involved in gating emotional responses in the CNS but previous studies did not address the potential roles of CaMKIV in discrete brain regions. In the present study, we aimed at specifically dissecting the role of CaMKIV in the nucleus accumbens of adult mice. RESULTS: We used recombinant adeno-associated virus (rAAV)-mediated gene transfer of a dominant-negative CaMKIV variant (rAAV-dnCaMKIV) to inhibit endogenous CaMKIV in the nucleus accumbens. rAAV-dnCaMKIV treated animals were subjected to a battery of tests including, prepulse inhibition of the acoustic startle response, open field, social interaction and anxiety-related behaviour. We found that basal locomotor activity in the open field, and prepulse inhibition or startle performance were unaltered in mice infected with rAAV-dnCaMKIV in the nucleus accumbens. However, anxiogenic effects were revealed in social interaction testing and the light/dark emergence test. CONCLUSIONS: Our findings suggest a modulatory role of CaMKIV in the nucleus accumbens in anxiety-like behaviour but not sensorimotor gating. [Abstract/Link to Full Text]

Wautier F, Wislet-Gendebien S, Chanas G, Rogister B, Leprince P
Regulation of nestin expression by thrombin and cell density in cultures of bone mesenchymal stem cells and radial glial cells.
BMC Neurosci. 2007 Nov 30;8(1):104.
ABSTRACT: BACKGROUND: Bone marrow stromal cells and radial glia are two stem cell types with neural phenotypic plasticity. Bone marrow mesenchymal stem cells can differentiate into osteocytes, chondrocytes and adipocytes, but can also differentiate into non-mesenchymal cell, i.e. neural cells in appropriate in vivo and in vitro experimental conditions. Likewise, radial glial cells are the progenitors of many neurons in the developing cortex, but can also generate astrocytes. Both cell types express nestin, an intermediate filament protein which is the hallmark of neural precursors. RESULTS: In this study, we demonstrate that thrombin, a multifunctional serine protease, stimulates the growth of radial glial cells (RG) and mesenchymal stem cells (MSCs) in a dose-dependent manner. In RG, the mitogenic effect of thrombin is correlated with increased expression of nestin but in MSCs, this mitogenic effect is associated with nestin down-regulation. Both cell types express the PAR-1 type receptor for Thrombin and the effect of Thrombin on both cell types can be mimicked by its analogue TRAP-6 activating specifically this receptor subtype or by serum which contains various amount of thrombin. Moreover, we also demonstrate that serum deprivation-induced expression of nestin in MSCs is inhibited by high cell density (> 50,000 cells/cm2). CONCLUSIONS: This work shows that thrombin stimulates the growth of both RG and MSCs and that nestin expression by MSCs and RG is regulated in opposite manner by thrombin in vitro. Thrombin effect is thus associated in both cell types with a proliferating, undifferentiated state but in RG this involves the induction of nestin expression, a marker of immaturity for neural progenitors. In MSCs however, nestin expression, as it corresponds to a progression from the mesenchymal "undifferentiated", proliferating phenotype toward acquisition of a neural fate, is inhibited by the mitogenic signal. [Abstract/Link to Full Text]

Ubeda-Banon I, Novejarque A, Mohedano-Moriano A, Pro-Sistiaga P, de la Rosa-Prieto C, Insausti R, Martinez-Garcia F, Lanuza E, Martinez-Marcos A
Projections from the posterolateral olfactory amygdala to the ventral striatum: neural basis for reinforcing properties of chemical stimuli.
BMC Neurosci. 2007 Nov 29;8(1):103.
ABSTRACT: BACKGROUND: Vertebrates sense chemical stimuli through the olfactory receptor neurons whose axons project to the main olfactory bulb. The main projections of the olfactory bulb are directed to the olfactory cortex and olfactory amygdala (the anterior and posterolateral cortical amygdalae). The posterolateral cortical amygdaloid nucleus mainly projects to other amygdaloid nuclei; other seemingly minor outputs are directed to the ventral striatum, in particular to the olfactory tubercle and the islands of Calleja. RESULTS: Although the olfactory projections have been previously described in the literature, injection of dextran-amines into the rat main olfactory bulb was performed with the aim of delimiting the olfactory tubercle and posterolateral cortical amygdaloid nucleus in our own material. Injection of dextran-amines into the posterolateral cortical amygdaloid nucleus of rats resulted in anterograde labeling in the ventral striatum, in particular in the core of the nucleus accumbens, and in the medial olfactory tubercle including some islands of Calleja and the cell bridges across the ventral pallidum. Injections of Fluoro-Gold into the ventral striatum were performed to allow retrograde confirmation of these projections. CONCLUSIONS: The present results extend previous descriptions of the posterolateral cortical amygdaloid nucleus efferent projections, which are mainly directed to the core of the nucleus accumbens and the medial olfactory tubercle. Our data indicate that the projection to the core of the nucleus accumbens arises from layer III; the projection to the olfactory tubercle arises from layer II and is much more robust than previously thought. This latter projection is directed to the medial olfactory tubercle including the corresponding islands of Calleja, an area recently described as critical node for the neural circuit of addiction to some stimulant drugs of abuse. [Abstract/Link to Full Text]

Biskup S, Moore DJ, Rea A, Lorenz-Deperieux B, Coombes CE, Dawson VL, Dawson TM, West AB
Dynamic and redundant regulation of LRRK2 and LRRK1 expression.
BMC Neurosci. 2007 Nov 28;8(1):102.
ABSTRACT: BACKGROUND: Mutations within the leucine-rich repeat kinase 2 (LRRK2) gene account for a significant proportion of autosomal-dominant and some late-onset sporadic Parkinson's disease. Elucidation of LRRK2 protein function in health and disease provides an opportunity for deciphering molecular pathways important in neurodegeneration. In mammals, LRRK1 and LRRK2 protein comprise a unique family encoding a GTPase domain that controls intrinsic kinase activity. The expression profiles of the murine LRRK proteins have not been fully described and insufficiently characterized antibodies have produced conflicting results in the literature. RESULTS: Herein, we comprehensively evaluate twenty-one commercially available antibodies to the LRRK2 protein using mouse LRRK2 and human LRRK2 expression vectors, wild-type and LRRK2-null mouse brain lysates and human brain lysates. Eleven antibodies detect over-expressed human LRRK2 while four antibodies detect endogenous human LRRK2. In contrast, two antibodies recognize over-expressed mouse LRRK2 and one antibody detected endogenous mouse LRRK2. LRRK2 protein resides in both soluble and detergent soluble protein fractions. LRRK2 and the related LRRK1 genes encode low levels of expressed mRNA species corresponding to low levels of protein both during development and in adulthood with largely redundant expression profiles. CONCLUSIONS: Despite previously published results, commercially available antibodies generally fail to recognize endogenous mouse LRRK2 protein; however, several antibodies retain the ability to detect over-expressed mouse LRRK2 protein. Over half of the commercially available antibodies tested detect over-expressed human LRRK2 protein and some have sufficient specificity to detect endogenous LRRK2 in human brain. The mammalian LRRK proteins are developmentally regulated in several tissues and coordinated expression suggest possible redundancy in the function between LRRK1 and LRRK2. [Abstract/Link to Full Text]

Andrykiewicz A, Patino L, Naranjo JR, Witte M, Hepp-Reymond MC, Kristeva R
Corticomuscular synchronization with small and large dynamic force output.
BMC Neurosci. 2007 Nov 27;8(1):101.
ABSTRACT: BACKGROUND: Over the last years much research has been devoted to investigating the synchronization between cortical motor and muscular activity as measured by EEG/MEG-EMG coherence. The main focus so far has been on corticomuscular coherence (CMC) during static force condition, for which coherence in beta-range has been described. In contrast, we showed in a recent study [1] that dynamic force condition is accompanied by gamma-range CMC. The modulation of the CMC by various dynamic force amplitudes, however, remained uninvestigated. The present study addresses this question. We examined eight healthy human subjects. EEG and surface EMG were recorded simultaneously. The visuomotor task consisted in isometric compensation for 3 forces (static, small and large dynamic) generated by a manipulandum. The CMC, the cortical EEG spectral power (SP), the EMG SP and the errors in motor performance (as the difference between target and exerted force) were analyzed. RESULTS: For the static force condition we found the well-documented, significant beta-range CMC (15-30Hz) over the contralateral sensorimotor cortex. Gamma-band CMC (30-45Hz) occurred in both small and large dynamic force conditions without any significant difference between both conditions. Although in some subjects beta-range CMC was observed during both dynamic force conditions no significant difference between conditions could be detected. With respect to the motor performance, the lowest errors were obtained in the static force condition and the highest ones in the dynamic condition with large amplitude. However, when we normalized the magnitude of the errors to the amplitude of the applied force (relative errors) no significant difference between both dynamic conditions was observed. CONCLUSIONS: These findings confirm that during dynamic force output the corticomuscular network oscillates at gamma frequencies. Moreover, we show that amplitude modulation of dynamic force has no effect on the gamma CMC in the low force range investigated. We suggest that gamma CMC is rather associated with the internal state of the sensorimotor system as supported by the unchanged relative error between both dynamic conditions. [Abstract/Link to Full Text]

Szpara ML, Vranizan K, Tai YC, Goodman CS, Speed TP, Ngai J
Analysis of gene expression during neurite outgrowth and regeneration.
BMC Neurosci. 2007 Nov 23;8(1):100.
ABSTRACT: BACKGROUND: The ability of a neuron to regenerate functional connections after injury is influenced by both its intrinsic state and also by extrinsic cues in its surroundings. Investigations of the transcriptional changes undergone by neurons during in vivo models of injury and regeneration have revealed many transcripts associated with these processes. Because of the complex milieu of interactions in vivo, these results include not only expression changes directly related to regenerative outgrowth and but also unrelated responses to surrounding cells and signals. In vitro models of neurite outgrowth provide a means to study the intrinsic transcriptional patterns of neurite outgrowth in the absence of extensive extrinsic cues from nearby cells and tissues. RESULTS: We have undertaken a genome-wide study of transcriptional activity in embryonic superior cervical ganglia (SCG) and dorsal root ganglia (DRG) during a time course of neurite outgrowth in vitro. Gene expression observed in these models likely includes both developmental gene expression patterns and regenerative responses to axotomy, which occurs as the result of tissue dissection. Comparison across both models revealed many genes with similar gene expression patterns during neurite outgrowth. These patterns were minimally affected by exposure to the potent inhibitory cue Semaphorin3A, indicating that this extrinsic cue does not exert major effects at the level of nuclear transcription. We also compared our data to several published studies of DRG and SCG gene expression in animal models of regeneration, and found the expression of a large number of genes in common between neurite outgrowth in vitro and regeneration in vivo. CONCLUSIONS: Many gene expression changes undergone by SCG and DRG during in vitro outgrowth are shared between these two tissue types and in common with in vivo regeneration models. This suggests that the genes identified in this in vitro study may represent new candidates worthy of further study for potential roles in the therapeutic regrowth of neuronal connections. [Abstract/Link to Full Text]

Wilson R, Bate C, Boshuizen R, Williams A, Brewer J
Squalestatin alters the intracellular trafficking of a neurotoxic prion peptide.
BMC Neurosci. 2007;899.
ABSTRACT: BACKGROUND: Neurotoxic peptides derived from the protease-resistant core of the prion protein are used to model the pathogenesis of prion diseases. The current study characterised the ingestion, internalization and intracellular trafficking of a neurotoxic peptide containing amino acids 105-132 of the murine prion protein (MoPrP105-132) in neuroblastoma cells and primary cortical neurons. RESULTS: Fluorescence microscopy and cell fractionation techniques showed that MoPrP105-132 co-localised with lipid raft markers (cholera toxin and caveolin-1) and trafficked intracellularly within lipid rafts. This trafficking followed a non-classical endosomal pathway delivering peptide to the Golgi and ER, avoiding classical endosomal trafficking via early endosomes to lysosomes. Fluorescence resonance energy transfer analysis demonstrated close interactions of MoPrP105-132 with cytoplasmic phospholipase A2 (cPLA2) and cyclo-oxygenase-1 (COX-1), enzymes implicated in the neurotoxicity of prions. Treatment with squalestatin reduced neuronal cholesterol levels and caused the redistribution of MoPrP105-132 out of lipid rafts. In squalestatin-treated cells, MoPrP105-132 was rerouted away from the Golgi/ER into degradative lysosomes. Squalestatin treatment also reduced the association between MoPrP105-132 and cPLA2/COX-1. CONCLUSION: As the observed shift in peptide trafficking was accompanied by increased cell survival these studies suggest that the neurotoxicity of this PrP peptide is dependent on trafficking to specific organelles where it activates specific signal transduction pathways. [Abstract/Link to Full Text]

Porterfield VM, Piontkivska H, Mintz EM
Identification of novel light-induced genes in the suprachiasmatic nucleus.
BMC Neurosci. 2007 Nov 19;8(1):98.
ABSTRACT: BACKGROUND: The transmission of information about the photic environment to the circadian clock involves a complex array of neurotransmitters, receptors, and second messenger systems. Exposure of an animal to light during the subjective night initiates rapid transcription of a number of immediate-early genes in the suprachiasmatic nucleus of the hypothalamus. Some of these genes have known roles in entraining the circadian clock, while others have unknown functions. Using laser capture microscopy, microarray analysis, and quantitative real-time PCR, we performed a comprehensive screen for changes in gene expression immediately following a 30 minute light pulse in suprachiasmatic nucleus of mice. RESULTS: The results of the microarray screen successfully identified previously known light-induced genes as well as several novel genes that may be important in the circadian clock. Newly identified light-induced genes include early growth response 2, proviral integration site 3, growth-arrest and DNA-damage-inducible 45 beta, and TCDD-inducible poly(ADP-ribose) polymerase. Comparative analysis of promoter sequences revealed the presence of evolutionarily conserved CRE and associated TATA box elements in most of the light-induced genes, while other core clock genes generally lack this combination of promoter elements. CONCLUSIONS: The photic signalling cascade in the suprachiasmatic nucleus activates an array of immediate-early genes, most of which have unknown functions in the circadian clock. Detected evolutionary conservation of CRE and TATA box elements in promoters of light-induced genes suggest that the functional role of these elements has likely remained the same over evolutionary time across mammalian orders. [Abstract/Link to Full Text]

Bourane S, Mechaly I, Venteo S, Garces A, Fichard A, Valmier J, Carroll P
A SAGE-based screen for genes expressed in sub-populations of neurons in the mouse dorsal root ganglion.
BMC Neurosci. 2007 Nov 19;8(1):97.
ABSTRACT: BACKGROUND: The different sensory modalities temperature, pain, touch and muscle proprioception are carried by somatosensory neurons of the dorsal root ganglia. Study of this system is hampered by the lack of molecular markers for many of these neuronal sub-types. In order to detect genes expressed in sub-populations of somatosensory neurons, gene profiling was carried out on wild-type and TrkA mutant neonatal dorsal root ganglia (DRG) using SAGE (serial analysis of gene expression) methodology. Thermo-nociceptors constitute up to 80 % of the neurons in the DRG. In TrkA mutant DRGs, the nociceptor sub-class of sensory neurons is lost due to absence of nerve growth factor survival signaling through its receptor TrkA. Thus, comparison of wild-type and TrkA mutants allows the identification of transcripts preferentially expressed in the nociceptor or mechano-proprioceptor subclasses, respectively. RESULTS: Our comparison revealed 240 genes differentially expressed between the two tissues (P< 0.01). Some of these genes, CGRP, Scn10a are known markers of sensory neuron sub-types. Several potential markers of sub-populations, Dok4, Crip2 and Grik1/GluR5 were further analyzed by quantitative RT-PCR and double labeling with TrkA,-B,-C, c-ret, parvalbumin and isolectin B4, known markers of DRG neuron sub-types. Expression of Grik1/GluR5 was restricted to the isolectin B4+ nociceptive population, while Dok4 and Crip2 had broader expression profiles. Crip2 expression was however excluded from the proprioceptor sub-population. CONCLUSION: We have identified and characterized the detailed expression patterns of three genes in the developing DRG, placing them in the context of the known major neuronal sub-types defined by molecular markers. Further analysis of differentially expressed genes in this tissue promises to extend our knowledge of the molecular diversity of different cell types and forms the basis for understanding their particular functional specificities. [Abstract/Link to Full Text]

Fei Z, Zhang X, Bai HM, Jiang XF, Li X, Zhang W, Hu W
Posttraumatic secondary brain insults exacerbates neuronal injury by altering Metabotropic Glutamate Receptors.
BMC Neurosci. 2007 Nov 17;8(1):96.
ABSTRACT: Background Our previous studies indicated that metabotropic glutamate receptors (mGluRs) are deeply involved in the secondary processes after diffuse brain injury (DBI). In the present study, we used a rodent DBI model to determine whether hypotension exacerbates neuronal injury as a secondary brain insult (SBI) after traumatic brain injury (TBI) by changing the expression of metabotropic glutamate receptors (mGluRs) in the cerebral cortex. Results Three hundred and eleven male Sprague-Dawley rats were randomly assigned into five groups: normal control, sham-operated control, SBI alone, DBI alone, or DBI with SBI. DBI was produced in rats by Marmarou's methods and the SBI model was produced by hypotension. The alteration of neuronal expression of mGluRs after DBI and DBI coupled with SBI was observed by hybridization in situ at different time points in the experiment. We found a higher mortality and neurological severity score (NSS) for rats in the DBI with SBI group compared with those in the DBI alone group. Although there was a significant rise in the expression of group I and group III mGluRs (except mGluR6) and a decrease in the expression of group II mGluRs after DBI (P<0.05), the changes were more severe when DBI was coupled with SBI (P<0.05). The expression of group I mGluRs peaked at 24 hours, while the expression of the group III mGluRs peaked at 6 hours after injuries, which may reflect a self-protection first mechanism of the damaged neurons. Moreover, the overall neuro-harmful effects of mGluRs on neurons were seemly associated with higher mortality and NSS in the DBI with SBI group. Conclusions The results suggest posttraumatic SBI may exacerbate neuronal injury or brain injury by altering expression of mGluRs, and more emphasis should therefore be put on the prevention and treatment of SBI. [Abstract/Link to Full Text]

Qiao X, Lu JY, Hofmann SL
Gene expression profiling in a mouse model of infantile neuronal ceroid lipofuscinosis reveals upregulation of immediate early genes and mediators of the inflammatory response.
BMC Neurosci. 2007 Nov 16;8(1):95.
ABSTRACT: BACKGROUND: The infantile form of neuronal ceroid lipofuscinosis (also known as infantile Batten disease) is caused by hereditary deficiency of a lysosomal enzyme, palmitoyl-protein thioesterase-1 (PPT1), and is characterized by severe cortical degeneration with blindness and cognitive and motor dysfunction. The PPT1-deficient knockout mouse recapitulates the key features of the disorder, including seizures and death by 7-9 months of age. In the current study, we compared gene expression profiles of whole brain from PPT1 knockout and normal mice at 3, 5 and 8 months of age to identify temporal changes in molecular pathways implicated in disease pathogenesis. RESULTS: A total of 267 genes were significantly (approximately 2-fold) up- or downregulated over the course of the disease. Immediate early genes (Arc, Cyr61, c-fos, jun-b, btg2, NR4A1) were among the first genes upregulated during the presymptomatic period whereas immune response genes dominated at later time points. Chemokine ligands and protease inhibitors were among the most transcriptionally responsive genes. Neuronal survival factors (IGF-1 and CNTF) and a negative regulator of neuronal apoptosis (DAP kinase-1) were upregulated late in the course of the disease. Few genes were downregulated; these included the alpha2 subunit of the GABA-A receptor, a component of cortical and hippocampal neurons, and Hes5, a transcription factor important in neuronal differentiation. CONCLUSIONS: A molecular description of gene expression changes occurring in the brain throughout the course of neuronal ceroid lipofuscinosis suggests distinct phases of disease progression, provides clues to potential markers of disease activity, and points to new targets for therapy. [Abstract/Link to Full Text]

Threlkeld SW, Rosen GD, Fitch RH
Age at developmental cortical injury differentially alters corpus callosum volume in the rat.
BMC Neurosci. 2007 Nov 12;8(1):94.
ABSTRACT: BACKGROUND: Freezing lesions to developing rat cortex induced between postnatal day (P) one and three (P1 - 3) lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case [1]. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity [1, 2, 3, 4], we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments [5, 6, 7]. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90), were further analyzed for changes in corpus callosum volume. RESULTS: Results showed a significant main effect of Treatment on corpus callosum volume [F(1,57) = 10.2, P < .01], with lesion subjects showing significantly smaller callosal volumes as compared to shams. An Age at Treatment x Treatment interaction [F(2,57) = 3.2, P < .05], indicated that corpus callosum size decreased as the age of injury decreased from P5 to P1. Simple effects analysis showed significant differences between P1 and P3 [F(1,28) = 8.7, P < .01], and P1 and P5 [F(1,28) = 15.1, P < .001], subjects. Rats with P1 injury resulting in microgyria had the greatest reduction in corpus callosum volume (22% reduction), followed by the P3 group (11% reduction), which showed a significant reduction in corpus callosum volume compared to shams [F(1,31) = 5.9, P < .05]. Finally, the P5 lesion group did not significantly differ from the sham subjects in callosal volume. CONCLUSIONS: Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats [1, 8]. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments [1], compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased corpus callosum volume may represent an additional marker for long-term behavioral outcome. [Abstract/Link to Full Text]

Mitsios N, Saka M, Krupinski J, Pennucci R, Sanfeliu C, Wang Q, Rubio F, Gaffney J, Kumar P, Kumar S, Sullivan M, Slevin M
A microarray study of gene and protein regulation in human and rat brain following middle cerebral artery occlusion.
BMC Neurosci. 2007 Nov 12;8(1):93.
ABSTRACT: BACKGROUND: Altered gene expression is an important feature of ischemic cerebral injury and affects proteins of many functional classes. We have used microarrays to investigate the changes in gene expression at various times-points after middle cerebral artery occlusion in human and rat brain. RESULTS: Our results demonstrated a significant difference in the number of genes affected and the time-course of expression between the two cases. The total number of deregulated genes in the rat was 335 versus 126 in the human, while, of 393 overlapping genes between the two array sets, 184 were changed only in the rat and 36 in the human with a total of 41 genes deregulated in both cases. Interestingly, the mean fold changes were much higher in the human. The expression of novel genes, including p21-activated kinase 1 (PAK1), matrix metalloproteinase 11 (MMP11) and integrase interactor 1, was further analyzed by RT-PCR, Western blotting and immunohistochemistry. Strong neuronal staining was seen for PAK1 and MMP11. CONCLUSION: Our findings confirmed previous studies reporting that gene expression screening can detect known and unknown transcriptional features of stroke and highlight the importance of research using human brain tissue in the search for novel therapeutic agents. [Abstract/Link to Full Text]

Bagley J, Larocca G, Jimenez DA, Urban NN
Adult neurogenesis and specific replacement of interneuron subtypes in the mouse main olfactory bulb.
BMC Neurosci. 2007 Nov 9;8(1):92.
ABSTRACT: BACKGROUND: New neurons are generated in the adult brain from stem cells found in the subventricular zone (SVZ). These cells proliferate in the SVZ, generating neuroblasts which then migrate to the main olfactory bulb (MOB), ending their migration in the glomerular layer (GLL) and the granule cell layer (GCL) of the MOB. Neuronal populations in these layers undergo turnover throughout life, but whether all neuronal subtypes found in these areas are replaced and when neurons begin to express subtypespecific markers is not known. RESULTS: Here we use BrdU injections and immunohistochemistry against interneuron-specific markers (calretinin, calbindin, N-copein, tyrosine hydroxylase and GABA) and show that adult-generated neurons express markers of all major subtypes of neurons in the GLL and GCL. Moreover, the fractions of new neurons that express subtype-specific markers at 40 and 75 days post BrdU injection are very similar to the fractions of all neurons expressing these markers. We also show that many neurons in the glomerular layer do not express NeuN, but are readily and specifically labeled by the fluorescent nissl stain Neurotrace. CONCLUSIONS: The expression of neuronal subtype-specific markers by new neurons in the GLL and GCL changes rapidly during the period from 14-40 days after BrdU injection before reaching adult levels. This period may represent a critical window for cell fate specification similar to that observed for neuronal survival. [Abstract/Link to Full Text]

Pinel P, Thirion B, Meriaux S, Jobert A, Serres J, Le Bihan D, Poline JB, Dehaene S
Fast reproducible identification and large-scale databasing of individual functional cognitive networks.
BMC Neurosci. 2007 Oct 31;8(1):91.
ABSTRACT: BACKGROUND: Although cognitive processes such as reading and calculation are associated with reproducible cerebral networks, inter-individual variability is considerable. Understanding the origins of this variability will require the elaboration of large multimodal databases compiling behavioral, anatomical, genetic and functional neuroimaging data over hundreds of subjects. With this goal in mind, we designed a simple and fast acquisition procedure based on a 5-minute functional magnetic resonance imaging (fMRI) sequence that can be run as easily and as systematically as an anatomical scan, and is therefore used in every subject undergoing fMRI in our laboratory. This protocol captures the cerebral bases of auditory and visual perception, motor actions, reading, language comprehension and mental calculation at an individual level. RESULTS: 81 subjects were successfully scanned. Before describing inter-individual variability, we demonstrated in the present study the reliability of individual functional data obtained with this short protocol. Considering the anatomical variability, we then needed to correctly describe individual functional networks in a voxel-free space. We applied then non-voxel based methods that automatically extract main features of individual patterns of activation: group analyses performed on these individual data not only converge to those reported with a more conventional voxel-based random effect analysis, but also keep information concerning variance in location and degrees of activation across subjects. CONCLUSIONS: This collection of individual fMRI data will help to describe the cerebral inter-subject variability of the correlates of some language, calculation and sensorimotor tasks. In association with demographic, anatomical, behavioral and genetic data, this protocol will serve as the cornerstone to establish a hybrid database of hundreds of subjects suitable to study the range and causes of variation in the cerebral bases of numerous mental processes. [Abstract/Link to Full Text]

Pellissier F, Gerber A, Bauer C, Ballivet M, Ossipow V
The adhesion molecule Necl-3/SynCAM-2 localizes to myelinated axons, binds to oligodendrocytes and promotes cell adhesion.
BMC Neurosci. 2007 Oct 29;8(1):90.
ABSTRACT: BACKGROUND: Cell adhesion molecules are plasma membrane proteins specialized in cell-cell recognition and adhesion. Two related adhesion molecules, Necl-1 and Necl-2/SynCAM, were recently described and shown to fulfill important functions in the central nervous system. The purpose of the work was to investigate the distribution, and the properties of Necl-3/SynCAM-2, a previously uncharacterized member of the Necl family with which it shares a conserved modular organization and extensive sequence homology. RESULTS: We show that Necl-3/SynCAM-2 is a plasma membrane protein that accumulates in several tissues, including those of the central and peripheral nervous system. There, Necl-3/SynCAM-2 is expressed in ependymal cells and in myelinated axons, and sits at the interface between the axon shaft and the myelin sheath. Several independent assays demonstrate that Necl-3/SynCAM-2 functionally and selectively interacts with oligodendrocytes. We finally prove that Necl-3/SynCAM-2 is a bona fide adhesion molecule that engages in homo- and heterophilic interactions with the other Necl family members, leading to cell aggregation. CONCLUSIONS: Collectively, our manuscripts and the works on Necl-1 and SynCAM/Necl-2 reveal a complex set of interactions engaged in by the Necl proteins in the nervous system. Our work also support the notion that the family of Necl proteins fulfils key adhesion and recognition functions in the nervous system, in particular between different cell types. [Abstract/Link to Full Text]

Otten M, Nieuwland MS, Van Berkum JJ
Great expectations: Specific lexical anticipation influences the processing of spoken language.
BMC Neurosci. 2007 Oct 26;8(1):89.
ABSTRACT: BACKGROUND: Recently several studies have shown that people use contextual information to make predictions about the rest of the sentence or story as the text unfolds. Using event related potentials (ERPs) we tested whether these on-line predictions are based on a message-based representation of the discourse or on simple automatic activation by individual words. Subjects heard short stories that were highly constraining for one specific noun, or stories that were not specifically predictive but contained the same prime words as the predictive stories. To test whether listeners make specific predictions critical nouns were preceded by an adjective that was inflected according to, or in contrast with, the gender of the expected noun. RESULTS: When the message of the preceding discourse was predictive, adjectives with an unexpected gender-inflection evoked a negative deflection over right-frontal electrodes between 300 and 600 ms. This effect was not present in the prime control context, indicating that the prediction mismatch does not hinge on word-based priming but is based on the actual message of the discourse. CONCLUSIONS: When listening to a constraining discourse people rapidly make very specific predictions about the remainder of the story, as the story unfolds. These predictions are not simply based on word-based automatic activation, but take into account the actual message of the discourse. [Abstract/Link to Full Text]

Kruger C, Laage R, Pitzer C, Schabitz WR, Schneider A
The hematopoietic factor GM-CSF (Granulocyte-macrophage colony-stimulating factor) promotes neuronal differentiation of adult neural stem cells in vitro.
BMC Neurosci. 2007 Oct 22;8(1):88.
ABSTRACT: BACKGROUND: Granulocyte-macrophage colony stimulating factor (GM-CSF) is a hematopoietic growth factor involved in the generation of granulocytes, macrophages, and dendritic cells from hematopoietic progenitor cells. We have recently demonstrated that GM-CSF has anti-apoptotic functions on neurons, and is neuroprotective in animal stroke models. RESULTS: The GM-CSF receptor alpha is expressed on adult neural stem cells in the rodent brain, and in culture. Addition of GM-CSF to NSCs in vitro increased neuronal differentiation in a dose-dependent manner as determined by quantitative PCR, reporter gene assays, and FACS analysis. CONCLUSIONS: The hematopoietic growth factor GM-CSF stimulates neuronal differentiation of adult NSCs. These data highlight the astonishingly similar functions of major hematopoietic factors in the brain, and raise the clinical attractiveness of GM-CSF as a novel drug for neurological disorders. [Abstract/Link to Full Text]

Franken P, Thomason R, Heller HC, O'Hara BF
A non-circadian role for clock-genes in sleep homeostasis: a strain comparison.
BMC Neurosci. 2007 Oct 18;8(1):87.
ABSTRACT: BACKGROUND: We have previously reported that the expression of circadian clock-genes increases in the cerebral cortex after sleep deprivation (SD) and that the sleep rebound following SD is attenuated in mice deficient for one or more clock-genes. We hypothesized that besides generating circadian rhythms, clock-genes also play a role in the homeostatic regulation of sleep. Here we follow the time course of the forebrain changes in the expression of the clock-genes period (per)-1, per2, and of the clock-controlled gene albumin D-binding protein (dbp) during a 6h SD and subsequent recovery sleep in three inbred strains of mice for which the homeostatic sleep rebound following SD differs. We reasoned that if clock genes are functionally implicated in sleep homeostasis then the SD-induced changes in gene expression should vary according to the genotypic differences in the sleep rebound. RESULTS: In all three strains per expression was increased when animals were kept awake but the rate of increase during the SD as well as the relative increase in per after 6h SD were highest in the strain for which the sleep rebound was smallest; i.e., DBA/2J (D2). Moreover, whereas in the other two strains per1 and per2 reverted to control levels with recovery sleep, per2 expression specifically, remained elevated in D2 mice. dbp expression increased during the light period both during baseline and during SD although levels were reduced during the latter condition compared to baseline. In contrast to per2, dbp expression reverted to control levels with recovery sleep in D2 only, whereas in the two other strains expression remained decreased. CONCLUSIONS: These findings support and extend our previous findings that clock genes in the forebrain are implicated in the homeostatic regulation of sleep and suggest that sustained, high levels of per2 expression may negatively impact recovery sleep. [Abstract/Link to Full Text]

Tsibidis GD, Tavernarakis N
Nemo: a computational tool for analyzing nematode locomotion.
BMC Neurosci. 2007 Oct 17;8(1):86.
ABSTRACT: BACKGROUND: The nematode Caenorhabditis elegans responds to an impressive range of chemical, mechanical and thermal stimuli and is extensively used to investigate the molecular mechanisms that mediate chemosensation, mechanotransduction and thermosensation. The main behavioral output of these responses is manifested as alterations in animal locomotion. Monitoring and examination of such alterations requires tools to capture and quantify features of nematode movement. RESULTS: In this paper, we introduce Nemo (nematode movement), a computationally efficient and robust two-dimensional object tracking algorithm for automated detection and analysis of C. elegans locomotion. This algorithm enables precise measurement and feature extraction of nematode movement components. In addition, we develop a Graphical User Interface designed to facilitate processing and interpretation of movement data. While, in this study, we focus on the simple sinusoidal locomotion of C. elegans, our approach can be readily adapted to handle complicated locomotory behaviour patterns by including additional movement characteristics and parameters subject to quantification. CONCLUSIONS: Our software tool offers the capacity to extract, analyze and measure nematode locomotion features by processing simple video files. By allowing precise and quantitative assessment of behavioral traits, this tool will assist the genetic dissection and elucidation of the molecular mechanisms underlying specific behavioral responses. [Abstract/Link to Full Text]

Lemon CH, Katz DB
The neural processing of taste.
BMC Neurosci. 2007;8 Suppl 3S5.
Although there have been many recent advances in the field of gustatory neurobiology, our knowledge of how the nervous system is organized to process information about taste is still far from complete. Many studies on this topic have focused on understanding how gustatory neural circuits are spatially organized to represent information about taste quality (e.g., "sweet", "salty", "bitter", etc.). Arguments pertaining to this issue have largely centered on whether taste is carried by dedicated neural channels or a pattern of activity across a neural population. But there is now mounting evidence that the timing of neural events may also importantly contribute to the representation of taste. In this review, we attempt to summarize recent findings in the field that pertain to these issues. Both space and time are variables likely related to the mechanism of the gustatory neural code: information about taste appears to reside in spatial and temporal patterns of activation in gustatory neurons. What is more, the organization of the taste network in the brain would suggest that the parameters of space and time extend to the neural processing of gustatory information on a much grander scale. [Abstract/Link to Full Text]

Krimm RF
Factors that regulate embryonic gustatory development.
BMC Neurosci. 2007;8 Suppl 3S4.
Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP). As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF), functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-beta-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and targeting of peripheral axons may have the same functions in the gustatory CNS. [Abstract/Link to Full Text]

Boughter JD, Bachmanov AA
Behavioral genetics and taste.
BMC Neurosci. 2007;8 Suppl 3S3.
This review focuses on behavioral genetic studies of sweet, umami, bitter and salt taste responses in mammals. Studies involving mouse inbred strain comparisons and genetic analyses, and their impact on elucidation of taste receptors and transduction mechanisms are discussed. Finally, the effect of genetic variation in taste responsiveness on complex traits such as drug intake is considered. Recent advances in development of genomic resources make behavioral genetics a powerful approach for understanding mechanisms of taste. [Abstract/Link to Full Text]

Kambere MB, Lane RP
Co-regulation of a large and rapidly evolving repertoire of odorant receptor genes.
BMC Neurosci. 2007;8 Suppl 3S2.
The olfactory system meets niche- and species-specific demands by an accelerated evolution of its odorant receptor repertoires. In this review, we describe evolutionary processes that have shaped olfactory and vomeronasal receptor gene families in vertebrate genomes. We emphasize three important periods in the evolution of the olfactory system evident by comparative genomics: the adaptation to land in amphibian ancestors, the decline of olfaction in primates, and the delineation of putative pheromone receptors concurrent with rodent speciation. The rapid evolution of odorant receptor genes, the sheer size of the repertoire, as well as their wide distribution in the genome, presents a developmental challenge: how are these ever-changing odorant receptor repertoires coordinated within the olfactory system? A central organizing principle in olfaction is the specialization of sensory neurons resulting from each sensory neuron expressing only ~one odorant receptor allele. In this review, we also discuss this mutually exclusive expression of odorant receptor genes. We have considered several models to account for co-regulation of odorant receptor repertoires, as well as discussed a new hypothesis that invokes important epigenetic properties of the system. [Abstract/Link to Full Text]

Elsaesser R, Paysan J
The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells.
BMC Neurosci. 2007;8 Suppl 3S1.
Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existence of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use. [Abstract/Link to Full Text]

Ferguson C, Hardy SL, Werner DF, Hileman SM, Delorey TM, Homanics GE
New insight into the role of the beta3 subunit of the GABAA-R in development, behavior, body weight regulation, and anesthesia revealed by conditional gene knockout.
BMC Neurosci. 2007;885.
BACKGROUND: The beta3 subunit of the gamma-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of beta3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated beta3 gene was engineered. RESULTS: Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the beta3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed beta3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of beta3 was achieved by crossing floxed beta3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal beta3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of beta3 was achieved using alpha CamKII-cre transgenic mice. Palate development was normal in forebrain selective beta3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15-25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. CONCLUSION: Conditional inactivation of the beta3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed beta3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the beta3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes. [Abstract/Link to Full Text]

Storozhevykh TP, Senilova YE, Persiyantseva NA, Pinelis VG, Pomytkin IA
Mitochondrial respiratory chain is involved in insulin-stimulated hydrogen peroxide production and plays an integral role in insulin receptor autophosphorylation in neurons.
BMC Neurosci. 2007;884.
BACKGROUND: Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons. RESULTS: Insulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN. CONCLUSION: Results of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons. [Abstract/Link to Full Text]

Stins JF, Beek PJ
Effects of affective picture viewing on postural control.
BMC Neurosci. 2007;883.
BACKGROUND: Emotion theory holds that unpleasant events prime withdrawal actions, whereas pleasant events prime approach actions. Recent studies have suggested that passive viewing of emotion eliciting images results in postural adjustments, which become manifest as changes in body center of pressure (COP) trajectories. From those studies it appears that posture is modulated most when viewing pictures with negative valence. The present experiment was conducted to test the hypothesis that pictures with negative valence have a greater impact on postural control than neutral or positive ones. Thirty-four healthy subjects passively viewed a series of emotion eliciting images, while standing either in a bipedal or unipedal stance on a force plate. The images were adopted from the International Affective Picture System (IAPS). We analysed mean and variability of the COP and the length of the associated sway path as a function of emotion. RESULTS: The mean position of the COP was unaffected by emotion, but unipedal stance resulted in overall greater body sway than bipedal stance. We found a modest effect of emotion on COP: viewing pictures of mutilation resulted in a smaller sway path, but only in unipedal stance. We obtained valence and arousal ratings of the images with an independent sample of viewers. These subjects rated the unpleasant images as significantly less pleasant than neutral images, and the pleasant images as significantly more pleasant than neutral images. However, the subjects rated the images as overall less pleasant and less arousing than viewers in a closely comparable American study, pointing to unknown differences in viewer characteristics. CONCLUSION: Overall, viewing emotion eliciting images had little effect on body sway. Our finding of a reduction in sway path length when viewing pictures of mutilation was indicative of a freezing strategy, i.e. fear bradycardia. The results are consistent with current knowledge about the neuroanatomical organization of the emotion system and the neural control of behavior. [Abstract/Link to Full Text]

Zambrano A, Otth C, Mujica L, Concha II, Maccioni RB
Interleukin-3 prevents neuronal death induced by amyloid peptide.
BMC Neurosci. 2007;882.
BACKGROUND: Interleukin-3 (IL-3) is an important glycoprotein involved in regulating biological responses such as cell proliferation, survival and differentiation. Its effects are mediated via interaction with cell surface receptors. Several studies have demonstrated the expression of IL-3 in neurons and astrocytes of the hippocampus and cortices in normal mouse brain, suggesting a physiological role of IL-3 in the central nervous system. Although there is evidence indicating that IL-3 is expressed in some neuronal populations, its physiological role in these cells is poorly known. RESULTS: In this study, we demonstrated the expression of IL-3 receptor in cortical neurons, and analyzed its influence on amyloid beta (Abeta)-treated cells. In these cells, IL-3 can activate at least three classical signalling pathways, Jak/STAT, Ras/MAP kinase and the PI 3-kinase. Viability assays indicated that IL-3 might play a neuroprotective role in cells treated with Abeta fibrils. It is of interest to note that our results suggest that cell survival induced by IL-3 required PI 3-kinase and Jak/STAT pathway activation, but not MAP kinase. In addition, IL-3 induced an increase of the anti-apoptotic protein Bcl-2. CONCLUSION: Altogether these data strongly suggest that IL-3 neuroprotects neuronal cells against neurodegenerative agents like Abeta. [Abstract/Link to Full Text]


Recent Articles in BMC Neurology

Majer M, Jones JF, Unger ER, Solomon Youngblood L, Decker MJ, Gurbaxani B, Heim C, Reeves WC
Perception versus polysomnographic assessment of sleep in CFS and non-fatigued control subjects: results from a population-based study.
BMC Neurol. 2007 Dec 5;7(1):40.
ABSTRACT: BACKGROUND: Complaints of unrefreshing sleep are a prominent component of chronic fatigue syndrome (CFS); yet, polysomnographic studies have not consistently documented sleep abnormalities in CFS patients. We conducted this study to determine whether alterations in objective sleep characteristics are associated with subjective measures of poor sleep quality in persons with CFS. METHODS: We examined the relationship between perceived sleep quality and polysomnographic measures of nighttime and daytime sleep in 35 people with CFS and 40 non-fatigued control subjects, identified from the general population of Wichita, Kansas and defined by empiric criteria. Perceived sleep quality and daytime sleepiness were assessed using clinical sleep questionnaires. Objective sleep characteristics were assessed by nocturnal polysomnography and daytime multiple sleep latency testing. RESULTS: Participants with CFS reported unrefreshing sleep and problems sleeping during the preceding month significantly more often than did non-fatigued controls. Participants with CFS also rated their quality of sleep during the overnight sleep study as significantly worse than did control subjects. Control subjects reported significantly longer sleep onset latency than latency to fall asleep as measured by PSG and MSLT. There were no significant differences in sleep pathology or architecture between subjects with CFS and control subjects. CONCLUSION: People with CFS reported sleep problems significantly more often than control subjects. Yet, when measured these parameters and sleep architecture did not differ between the two subject groups. A unique finding requiring further study is that control, but not CFS subjects, significantly over reported sleep latency suggesting CFS subjects may have an increased appreciation of sleep behaviour that may contribute to their perceived sleep problems. [Abstract/Link to Full Text]

Duncan PW, Sullivan KJ, Behrman AL, Azen SP, Wu SS, Nadeau SE, Dobkin BH, Rose DK, Tilson JK
Protocol for the Locomotor Experience Applied Post-Stroke (LEAPS) trial: a randomized controlled trial.
BMC Neurol. 2007 Nov 8;7(1):39.
ABSTRACT: BACKGROUND: Locomotor training using body weight support and a treadmill as a therapeutic modality for rehabilitation of walking post-stroke is being rapidly adopted into clinical practice. There is an urgent need for a well-designed trial to determine the effectiveness of this intervention. The objective of the Locomotor Experience Applied Post-Stroke (LEAPS) trial is to determine if there is a difference in the proportion of participants who recover walking ability at one year post-stroke when randomized to a specialized locomotor training program (LTP), conducted at 2- or 6-months post-stroke, or those randomized to a home based non-specific, low intensity exercise intervention (HEP) provided 2 months post-stroke. We will determine if the timing of LTP delivery affects gait speed at 1 year and whether initial impairment severity interacts with the timing of LTP. The effect of number of treatment sessions will be determined by changes in gait speed taken pre-treatment andpost-12, -24, and -36 sessions. METHODS: We will recruit 400 adults with moderate or severe walking limitations within 30 days of stroke onset. At two months post stroke, participants are stratified by locomotor impairment severity as determined by overground walking speed and randomly assigned to one of three groups: (a) LTP-Early; (b) LTP-Late or (c) Home Exercise Program -Early. The LTP program includes body weight support on a treadmill and overground training. The LTP and HEP interventions are delivered for 36 sessions over 12 weeks. Primary outcome measure include successful walking recovery defined as the achievement of a 0.4 m/s gait speed or greater by persons with initial severe gait impairment or the achievement of a 0.8 m/s gait speed or greater by persons with initial moderate gait impairment. LEAPS is powered to detect a 20% difference in the proportion of participants achieving successful locomotor recovery between the LTP groups and the HEP group, and a 0.1 m/s mean difference in gait speed change between the two LTP groups. DISCUSSION: The goal of this single-blinded, phase III randomized clinical trial is to provide evidence to guide post-stroke walking recovery programs. Trial registration: NCT00243919. [Abstract/Link to Full Text]

Balion CM, Benson C, Raina PS, Papaioannou A, Patterson C, Ismaila AS
Brain type carnosinase in dementia: a pilot study.
BMC Neurol. 2007 Nov 5;7(1):38.
ABSTRACT: BACKGROUND: The pathological processes underlying dementia are poorly understood and so are the markers which identify them. Carnosinase is a dipeptidase found almost exclusively in brain and serum. Carnosinase and its substrate carnosine have been linked to neuropathophysiological processes. METHODS: Carnosinase activity was measured by a flourometric method in 37 patients attending a Geriatric Outpatient Clinic. There were 17 patients without dementia, 13 had Alzheimer's disease (AD) and 7 had mixed dementia (MD). RESULTS: The range of serum carnosinase activity for patients without dementia was 14.5 - 78.5 umol/ml/h. There was no difference in carnosinase activity between patients without dementia (40.3 +/- 15.2 mumol/ml/h) and patients with AD (44.4 +/- 12.4 umol/ml/h) or MD (26.6 +/- 15 umol/ml/h). However, levels in the MD group were significantly lower than the AD group (p = 0.01). This difference remained significant after adjusting for gender, MMSE score, exercise, but not age, one at a time and all combined. The effect of other medical conditions did not remove the significance between the AD and MD groups. The MD group, but not the AD group, demonstrated a significant trend with carnosinase activity decreasing with duration of disease (from first recorded date of diagnosis to date of blood collection) (r = -0.76, p = 0.049). There was no association with carnosinase activity and MMSE score in the AD or MD group. Both AD and MD patients on any dementia medication (donepezil, galantamine, memantine) had higher carnosinase activity compared to those not taking a dementia medication. Carnosinase activity was higher in patients who regularly exercised (n = 20) compared to those who did not exercise regularly (n = 17)(p = 0.006). CONCLUSIONS: This exploratory study has shown altered activities of the enzyme carnosinase in patients with dementia. [Abstract/Link to Full Text]

Cole JW, Naj AC, O'Connell JR, Stine OC, Sorkin JD, Wozniak MA, Stern BJ, Yepes M, Lawrence DA, Reinhart LJ, Strickland DK, Mitchell BD, Kittner SJ
Neuroserpin polymorphisms and stroke risk in a biracial population: the stroke prevention in young women study.
BMC Neurol. 2007 Oct 25;7(1):37.
ABSTRACT: BACKGROUND: Neuroserpin, primarily localized to CNS neurons, inhibits the adverse effects of tissue-type plasminogen activator (tPA) on the neurovascular unit and has neuroprotective effects in animal models of ischemic stroke. We sought to evaluate the association of neuroserpin polymorphisms with risk for ischemic stroke among young women. METHODS: A population-based case-control study of stroke among women aged 15-49 identified 224 cases of first ischemic stroke (47.3% African-American) and 211 age-matched control subjects (43.1% African-American). Neuroserpin single nucleotide polymorphisms (SNPs) chosen through HapMap were genotyped in the study population and assessed for association with stroke. RESULTS: Of the five SNPs analyzed, the A allele (frequency; Caucasian = 0.56, African-American = 0.42) of SNP rs6797312 located in intron 1 was associated with stroke in an age-adjusted dominant model (AA and AT vs. TT) among Caucasians (OR=2.05, p=0.023) but not African-Americans (OR=0.71, p=0.387). Models adjusting for other risk factors strengthened the association. Race-specific haplotype analyses, inclusive of SNP rs6797312, again demonstrated significant associations with stroke among Caucasians only. CONCLUSIONS: This study provides the first evidence that neuroserpin is associated with early-onset ischemic stroke among Caucasian women. [Abstract/Link to Full Text]

Bidot CJ, Horstman LL, Jy W, Jimenez JJ, Bidot Jr C, Ahn YS, Alexander JS, Gonzalez-Toledo E, Kelley RE, Minagar A
Clinical and neuroimaging correlates of antiphospholipid antibodies in Multiple Sclerosis: A preliminary study.
BMC Neurol. 2007 Oct 18;7(1):36.
ABSTRACT: BACKGROUND: The presence of antiphospholipid antibodies (APLA) in multiple sclerosis (MS) patients has been reported frequently but no clear relationship between APLA and the clinical and neuroimaging features of MS have heretofore been shown. We assessed the clinical and neuroimaging features of MS patients with plasma APLA. METHODS: A consecutive cohort of 24 subjects with relapsing-remitting (RR) MS were studied of whom 7 were in remission (Rem) and 17 in exacerbation (Exc). All subjects were examined and underwent MRI of brain. Patients' plasma was tested by standard ELISA for the presence of both IgM and IgG antibodies using a panel of 6 targets: cardiolipin (CL), beta2 glycoprotein I (beta2GPI), Factor VII/VIIa (FVIIa), phosphatidyl choline (PC), phosphatidyl serine (PS) and phosphatidyl ethanolamine (PE). RESULTS: In exacerbation up to 80% of MS subjects had elevated titers of IgM antibodies directed against the above antigens. However, in remission, less than half of MS patients had elevated titers of IgM antibodies against one or more of the above antigens. This difference was significant, p<0.01, for all 6 target antigens. Interestingly, none of the MS patients had elevated plasma titers of IgG against any of the target antigens tested. Correlation analysis between MRI enhancing lesions and plasma levels of APLA revealed high correlation for aPC, aPS and FVIIa (p<0.0065), a trend for aPE and aCL (p = 0.056), and no correlation for abeta2GP1. The strongest correlation was for FVIIa, p = 0.0002. CONCLUSION: The findings of this preliminary study show that increased APLA IgM is associated with exacerbations of MS. Currently, the significance of this association or role of these autoantibodies in pathogenesis of MS remains unknown. However, systematic longitudinal studies to measure APLA in larger cohorts of patients with relapsing-remitting MS, particularly before and after treatment with immunomodulatory agents, are needed to confirm these preliminary findings. [Abstract/Link to Full Text]

Southern L, Williams J, Esiri MM
Immunohistochemical study of N-epsilon-carboxymethyl lysine (CML) in human brain: relation to vascular dementia.
BMC Neurol. 2007;735.
BACKGROUND: Advanced glycation end-products (AGEs) and their receptor (RAGE) occur in dementia of the Alzheimer's type and diabetic microvascular disease. Accumulation of AGEs relates to risk factors for vascular dementia with ageing, including hypertension and diabetes. Cognitive dysfunction in vascular dementia may relate to microvascular disease resembling that in diabetes. We tested if, among people with cerebrovascular disease, (1) those with dementia have higher levels of neuronal and vascular AGEs and (2) if cognitive dysfunction depends on neuronal and/or vascular AGE levels. METHODS: Brain Sections from 25 cases of the OPTIMA (Oxford Project to Investigate Memory and Ageing) cohort, with varying degrees of cerebrovascular pathology and cognitive dysfunction (but only minimal Alzheimer type pathology) were immunostained for Nepsilon-(carboxymethyl)-lysine (CML), the most abundant AGE. The level of staining in vessels and neurons in the cortex, white matter and basal ganglia was compared to neuropsychological and other clinical measures. RESULTS: The probability of cortical neurons staining positive for CML was higher in cases with worse cognition (p = 0.01) or a history of hypertension (p = 0.028). Additionally, vascular CML staining related to cognitive impairment (p = 0.02) and a history of diabetes (p = 0.007). Neuronal CML staining in the basal ganglia related to a history of hypertension (p = 0.002). CONCLUSION: CML staining in cortical neurons and cerebral vessels is related to the severity of cognitive impairment in people with cerebrovascular disease and only minimal Alzheimer pathology. These findings support the possibility that cerebral accumulation of AGEs may contribute to dementia in people with cerebrovascular disease. [Abstract/Link to Full Text]

Braun SM, Beurskens AJ, van Kroonenburgh SM, Demarteau J, Schols JM, Wade DT
Effects of mental practice embedded in daily therapy compared to therapy as usual in adult stroke patients in Dutch nursing homes: design of a randomised controlled trial.
BMC Neurol. 2007 Oct 15;7(1):34.
ABSTRACT: BACKGROUND: Mental practice as an additional cognitive therapy is getting increased attention in stroke rehabilitation. A systematic review shows some evidence that several techniques in which movements are rehearsed mentally might be effective but not enough to be certain. This trial investigates whether mental practice can contribute to a quicker and/or better recovery of stroke in two Dutch nursing homes. The objective is to investigate the therapeutic potential of mental practice embedded in daily therapy to improve individually chosen daily activities of adult stroke patients compared to therapy as usual. In addition, we will investigate prognostic variables and feasibility (process evaluation). METHODS: A randomised, controlled, observer masked prospective trial will be conducted with adult stroke patients in the (sub)acute phase of stroke recovery. Over a six weeks intervention period the control group will receive multi professional therapy as usual. Patients in the experimental group will be instructed how to perform mental practice, and will receive care as usual in which mental practice is embedded in physical, occupation and speech therapy sessions. Outcome will be assessed at six weeks and six months. The primary outcome measure is the patient-perceived effect on performance of daily activities as assessed by an 11-point Likert Scale. Secondary outcomes are: Motricity Index, Nine Hole Peg Test, Barthel Index, Timed up and Go, 10 metres walking test, Rivermead Mobility Index. A sample size of the patients group and all therapists will be interviewed on their opinion of the experimental program to assess feasibility. All patients are asked to keep a log to determine unguided training intensity. DISCUSSION: Advantages and disadvantages of several aspects of the chosen design are discussed. Trial registration: ISRCTN27582267. [Abstract/Link to Full Text]

Ergul A, Elgebaly MM, Middlemore ML, Li W, Elewa H, Switzer JA, Hall C, Kozak A, Fagan SC
Increased hemorrhagic transformation and altered infarct size and localization after experimental stroke in a rat model type 2 diabetes.
BMC Neurol. 2007;733.
BACKGROUND: Interruption of flow through of cerebral blood vessels results in acute ischemic stroke. Subsequent breakdown of the blood brain barrier increases cerebral injury by the development of vasogenic edema and secondary hemorrhage known as hemorrhagic transformation (HT). Diabetes is a risk factor for stroke as well as poor outcome of stroke. The current study tested the hypothesis that diabetes-induced changes in the cerebral vasculature increase the risk of HT and augment ischemic injury. METHODS: Diabetic Goto-Kakizaki (GK) or control rats underwent 3 hours of middle cerebral artery occlusion and 21 h reperfusion followed by evaluation of infarct size, hemorrhage and neurological outcome. RESULTS: Infarct size was significantly smaller in GK rats (10 +/- 2 vs 30 +/- 4%, p < 0.001). There was significantly more frequent hematoma formation in the ischemic hemisphere in GK rats as opposed to controls. Cerebrovascular tortuosity index was increased in the GK model (1.13 +/- 0.01 vs 1.34 +/- 0.06, P < 0.001) indicative of changes in vessel architecture. CONCLUSION: These findings provide evidence that there is cerebrovascular remodeling in diabetes. While diabetes-induced remodeling appears to prevent infarct expansion, these changes in blood vessels increase the risk for HT possibly exacerbating neurovascular damage due to cerebral ischemia/reperfusion in diabetes. [Abstract/Link to Full Text]

Arboix A, Rodriguez-Aguilar R, Oliveres M, Comes E, Garcia-Eroles L, Massons J
Thalamic haemorrhage vs. internal capsule-basal ganglia haemorrhage: clinical profile and predictors of in-hospital mortality.
BMC Neurol. 2007 Oct 5;7(1):32.
ABSTRACT: BACKGROUND: There is a paucity of clinical studies focused specifically on intracerebral haemorrhages of subcortical topography, a subject matter of interest to clinicians involved in stroke management. This single centre, retrospective study was conducted with the following objectives: a) to describe the aetiological, clinical and prognostic characteristics of patients with thalamic haemorrhage as compared with that of patients with internal capsule-basal ganglia haemorrhage, and b) to identify predictors of in-hospital mortality in patients with thalamic haemorrhage. METHODS: Forty-seven patients with thalamic haemorrhage were included in the "Sagrat Cor Hospital of Barcelona Stroke Registry" during a period of 17 years. Data from stroke patients are entered in the stroke registry following a standardized protocol with 161 items regarding demographics, risk factors, clinical features, laboratory and neuroimaging data, complications and outcome. The region of the intracranial haemorrhage was identified on computerized tomographic (CT) scans and/or magnetic resonance imaging (MRI) of the brain. RESULTS: Thalamic haemorrhage accounted for 1.4% of all cases of stroke (n = 3420) and 13% of intracerebral haemorrhage (n = 364). Hypertension (53.2%), vascular malformations (6.4%), haematological conditions (4.3%) and anticoagulation (2.1%) were the main causes of thalamic haemorrhage. In-hospital mortality was 19% (n = 9). Sensory deficit, speech disturbances and lacunar syndrome were significantly associated with thalamic haemorrhage, whereas altered consciousness (odds ratio [OR] = 39.56), intraventricular involvement (OR = 24.74) and age (OR = 1.23), were independent predictors of in-hospital mortality. CONCLUSIONS: One in 8 patients with acute intracerebral haemorrhage had a thalamic hematoma. Altered consciousness, intraventricular extension of the hematoma and advanced age were determinants of a poor early outcome. [Abstract/Link to Full Text]

Alshubaili AF, Awadalla AW, Ohaeri JU, Mabrouk AA
Relationship of depression, disability, and family caregiver attitudes to the quality of life of Kuwaiti persons with multiple sclerosis: a controlled study.
BMC Neurol. 2007;731.
BACKGROUND: Assessment of subjective quality of life (QOL) of persons with multiple sclerosis (MS) could facilitate the detection of psychosocial aspects of disease that may otherwise go unrecognized. The objectives of the study were to (i) compare the QOL ratings of relapsing remitting (RRMS) and progressive (PMS) types of MS with those of a general population group and the impression of their family caregivers; and (ii) assess the association of demographic, clinical, treatment, depression, and caregiver variables with patients' QOL. METHODS: Consecutive clinic attendees at the national neurology hospital were assessed with the 26 -item WHOQOL Instrument, Beck's Depression Inventory and Expanded Disability Scale. Caregivers rated their impression of patients' QOL and attitudes to patients' illness. RESULTS: The 170 patients (60 m, 109 f) consisted of 145(85.3%) with RRMS and 25 with PMS, aged 32.4(SD 8.8), age at onset 27.1(7.7), EDSS score 2.9 (1.8), and 76% were employed. The patients were predominantly dissatisfied with their life circumstances. The RRMS group had higher QOL domain scores (P < 0.001), and lower depression(P > 0.05) and disability (P < 0.0001) scores than the PMS group. Patients had significantly lower QOL scores than the control group (P < 0.001). Caregiver impression was significantly correlated with patients' ratings. Depression was the commonest significant covariate of QOL domains. When we controlled for depression and disability scores, differences between the two MS groups became significant for only one (out of 6) QOL domains. Patients who were younger, better educated, employed, felt less sick and with lesser side effects, had higher QOL. The predictors of patients' overall QOL were disability score, caregiver impression of patients' QOL, and caregiver fear of having MS. CONCLUSION: Our data indicate that MS patients in stable condition and with social support can hope to have better QOL, if clinicians pay attention to depression, disability, the impact of side effects of treatment and family caregiver anxieties about the illness. The findings call for a regular program of psychosocial intervention in the clinical setting, to address these issues and provide caregiver education and supports, in order to enhance the quality of care. [Abstract/Link to Full Text]

Radojicic M, Nistor G, Keirstead HS
Ascending central canal dilation and progressive ependymal disruption in a contusion model of rodent chronic spinal cord injury.
BMC Neurol. 2007;730.
BACKGROUND: Chronic spinal cord injury (SCI) can lead to an insidious decline in motor and sensory function in individuals even years after the initial injury and is accompanied by a slow and progressive cytoarchitectural destruction. At present, no pathological mechanisms satisfactorily explain the ongoing degeneration. METHODS: Adult female Sprague-Dawley rats were anesthetized laminectomized at T10 and received spinal cord contusion injuries with a force of 250 kilodynes using an Infinite Horizon Impactor. Animals were randomly distributed into 5 groups and killed 1 (n = 4), 28 (n = 4), 120 (n = 4), 450 (n = 5), or 540 (n = 5) days after injury. Morphometric and immunohistochemical studies were then performed on 1 mm block sections, 6 mm cranial and 6 mm caudal to the lesion epicenter. The SPSS 11.5 t test was used to determine differences between quantitative measures. RESULTS: Here, we document the first report of an ascending central canal dilation and progressive ependymal disruption cranial to the epicenter of injury in a contusion model of chronic SCI, which was characterized by extensive dural fibrosis and intraparenchymal cystic cavitation. Expansion of the central canal lumen beyond a critical diameter corresponded with ependymal cell ciliary loss, an empirically predictable thinning of the ependymal region, and a decrease in cell proliferation in the ependymal region. Large, aneurysmal dilations of the central canal were accompanied by disruptions in the ependymal layer, periependymal edema and gliosis, and destruction of the adjacent neuropil. CONCLUSION: Cells of the ependymal region play an important role in CSF homeostasis, cellular signaling and wound repair in the spinal cord. The possible effects of this ascending pathology on ependymal function are discussed. Our studies suggest central canal dilation and ependymal region disruption as steps in the pathogenesis of chronic SCI, identify central canal dilation as a marker of chronic SCI and provide novel targets for therapeutic intervention. [Abstract/Link to Full Text]

Ada L, Dean CM, Morris ME
Supported treadmill training to establish walking in non-ambulatory patients early after stroke.
BMC Neurol. 2007;729.
BACKGROUND: It has been reported that only half of the non-ambulatory stroke patients admitted to inpatient rehabilitation in Australia learn to walk again 1. Treadmill walking with partial weight support via an overhead harness is a relatively new intervention that is designed to train walking. The main objective of this randomised controlled trail is to determine whether treadmill walking with partial weight support via an overhead harness is effective at establishing independent walking (i) more often, (ii) earlier and (iii) with a better quality of walking, than current physiotherapy intervention for non-ambulatory stroke patients. METHODS: A prospective, randomised controlled trial of inpatient intervention with a 6 month follow-up with blinded assessment will be conducted. 130 stroke patients who are unable to walk independently early after stroke will be recruited and randomly allocated to a control group or an experimental group. The control group will undertake 30 min of routine assisted overground walking while the experimental group will undertake 30 min of treadmill walking with partial weight support via an overhead harness per day. The proportion of participants achieving independent walking, the quality of walking, and community participation will be measured. The study has obtained ethical approval from the Human Research Ethics Committees of each of the sites involved in the study. DISCUSSION: Given that the Australian population is ageing and people after stroke can expect to live for longer, attainment of safe, independent walking is more likely to be associated with long-term health and well being. In its National Research Priorities, the Government has recognised that it will be important to promote healthy ageing and that this endeavour will be underpinned by research. The results of this study will clearly identify effective intervention to establish early quality walking, thereby promoting an increase in community participation in the longer term. [Abstract/Link to Full Text]

Vlaar AM, Bouwmans AE, van Kroonenburgh MJ, Mess WH, Tromp SC, Wuisman PG, Kessels AG, Winogrodzka A, Weber WE
Protocol of a prospective study on the diagnostic value of transcranial duplex scanning of the substantia nigra in patients with parkinsonian symptoms.
BMC Neurol. 2007;728.
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. As there is no definitive diagnostic test, its diagnosis is based on clinical criteria. Recently transcranial duplex scanning (TCD) of the substantia nigra in the brainstem has been proposed as an instrument to diagnose PD. We and others have found that TCD scanning of substantia nigra duplex is a relatively accurate diagnostic instrument in patients with parkinsonian symptoms. However, all studies on TCD so far have involved well-defined, later-stage PD patients, which will obviously lead to an overestimate of the diagnostic accuracy of TCD. We have therefore set out to conduct a prospective study testing the diagnostic accuracy of TCD in patients with a parkinsonism of unclear origin. METHODS/DESIGN: We will enroll 250 consecutive patients, who are referred to neurology outpatient clinics of two teaching hospitals, for analysis of clinically unclear parkinsonism. Patients, whose parkinsonism is clearly diagnosable at the first visit, will be excluded from the study. All patients will undergo a TCD of the substantia nigra. As a surrogate gold standard we will use the consensus clinical diagnosis reached by two independent, blinded, movement disorder specialist neurologists after 2 years follow-up. At the time of TCD, patients will also undergo a SPECT scan of the brain. DISCUSSION: As this prospective trial enroll only patients with an early-stage parkinsonism, it will yield data on the diagnostic accuracy of TCD that is relevant to daily clinical practice: The neurologist needs a diagnostic tool that provides additional information in patients with a clinically indefinable parkinsonian syndrome. The above described observational longitudinal study was designed to explicitly study this aspect in the diagnostic process. [Abstract/Link to Full Text]

Vlaar AM, van Kroonenburgh MJ, Kessels AG, Weber WE
Meta-analysis of the literature on diagnostic accuracy of SPECT in parkinsonian syndromes.
BMC Neurol. 2007;727.
BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disorder. One of the most widely used techniques to diagnose PD is a Single Photon Emission Computer Tomography (SPECT) scan to visualise the integrity of the dopaminergic pathways in the brain. Despite this there remains some discussion on the value of SPECT in the differential diagnosis of PD. We did a meta-analysis of all the existing literature on the diagnostic accuracy of both pre- and post-synaptic SPECT imaging in the differential diagnosis of PD. METHODS: Relevant studies were searched in Medline, EMBASE and Cochrane databases with back-searching of their reference lists. We limited our analysis to studies with a clinically relevant methodology: i.e. when they assessed the ability of the SPECT to provide 1. diagnosis of PD in an early phase vs. normalcy; 2 diagnostic differentiation between PD and essential tremor (ET); 3. distinguishing between PD and vascular parkinsonism (VP); 4. delineation of PD from atypical parkinsonian syndromes (APS). Gold standard was, dependent on the study type, clinical examination at initial visit or follow-up, and/or response to dopaminergic agents. RESULTS: The search gave 185 hits, of which we deemed 32 suitable for our analysis. From these we recalculated the diagnostic odds ratio of SPECT for the clinical questions above. The pooled odds ratio (with 95%CI) for presynaptic SPECT scan's ability to distinguish between early PD and normalcy was 60 (13 - 277). For the ability to differentiate between PD and ET this ratio was 210 (79-562). The ratio for presynaptic SPECT's ability to delineate PD from VP was 105 (32 - 348). The mean odds ratio for the presynaptic SPECT scans to differentiate between PD and the two APS was 2 (1 - 4), and for the postsynaptic SPECT imaging this was 19 (9-36). CONCLUSION: SPECT with presynaptic radiotracers is relatively accurate to differentiate patients with PD in an early phase from normalcy, patients with PD from those with ET, and PD from VP. The accuracy of SPECT with both presynaptic and postsynaptic tracers to differentiate between PD and APS is relatively low. [Abstract/Link to Full Text]

Rockwood K, Fay S, Gorman M, Carver D, Graham JE
The clinical meaningfulness of ADAS-Cog changes in Alzheimer's disease patients treated with donepezil in an open-label trial.
BMC Neurol. 2007;726.
BACKGROUND: In 6-month anti-dementia drug trials, a 4-point change in the Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) is held to be clinically important. We examined how this change compared with measures of clinical meaningfulness. METHODS: This is a secondary analysis of a 12 month open-label study of 100 patients (71 women) diagnosed with mild to moderate AD treated with 5-10 mg of donepezil daily. We studied the observed case, 6-month change from baseline on the ADAS-Cog, the Clinician's Interview Based Impression of Change-Plus Caregiver Input (CIBIC-Plus), patient-Goal Attainment Scaling (PGAS) and clinician-GAS (CGAS). RESULTS: At 6 months, donepezil-treated patients (n = 95) were more likely to show no change (+/- 3 points) on the ADAS-Cog (56%) than to improve (20%) or decline (24%) by 4-points. ADAS-Cog change scores were little correlated with other measures: from -0.09 for PGAS to 0.27 for the CIBIC-Plus. While patients who improved on the ADAS-Cog were less likely to decline on the clinical measures (26%), 43% of patients who declined on the ADAS-Cog improved on at least two of the clinical measures. CONCLUSION: The ADAS-Cog did not capture all clinically important effects. In general, ADAS-Cog improvement indicates clinical improvement, whereas many people with ADAS-Cog decline do not show clinical decline. The open-label design of this study does not allow us to know whether this is a treatment effect, which requires further investigation. [Abstract/Link to Full Text]

Blouin J, Teasdale N, Mouchnino L
Vestibular signal processing in a subject with somatosensory deafferentation: the case of sitting posture.
BMC Neurol. 2007;725.
BACKGROUND: The vestibular system of the inner ear provides information about head translation/rotation in space and about the orientation of the head with respect to the gravitoinertial vector. It also largely contributes to the control of posture through vestibulospinal pathways. Testing an individual severely deprived of somatosensory information below the nose, we investigated if equilibrium can be maintained while seated on the sole basis of this information. RESULTS: Although she was unstable, the deafferented subject (DS) was able to remain seated with the eyes closed in the absence of feet, arm and back supports. However, with the head unconsciously rotated towards the left or right shoulder, the DS's instability markedly increased. Small electrical stimulations of the vestibular apparatus produced large body tilts in the DS contrary to control subjects who did not show clear postural responses to the stimulations. CONCLUSION: The results of the present experiment show that in the lack of vision and somatosensory information, vestibular signal processing allows the maintenance of an active sitting posture (i.e. without back or side rests). When head orientation changes with respect to the trunk, in the absence of vision, the lack of cervical information prevents the transformation of the head-centered vestibular information into a trunk-centered frame of reference of body motion. For the normal subjects, this latter frame of reference enables proper postural adjustments through vestibular signal processing, irrespectively of the orientation of the head with respect to the trunk. [Abstract/Link to Full Text]

Fabrizio E, Vanacore N, Valente M, Rubino A, Meco G
High prevalence of extrapyramidal signs and symptoms in a group of Italian dental technicians.
BMC Neurol. 2007;724.
BACKGROUND: Occupational and chronic exposure to solvents and metals is considered a possible risk factor for Parkinson's disease and essential tremor. While manufacturing dental prostheses, dental technicians are exposed to numerous chemicals that contain toxins known to affect the central nervous system, such as solvents (which contain n-hexane in particular) and metals (which contain mercury, iron, chromium, cobalt and nickel). METHODS: We performed an epidemiological and clinical study on all 27 dental technicians working in a school for dental technicians. We asked all the technicians to fill in a self-administered questionnaire on extrapyramidal symptoms, and the General Health Questionnaire (GHQ), a self-administered screening instrument, to detect any psychiatric disorders. Moreover, we invited all 27 dental technicians to undergo a neurological examination and provide a detailed occupational history in our clinic. RESULTS: Of the 14 subjects who underwent the neurological examination, four had postural tremor and one had a diagnosis of Parkinson's disease. CONCLUSION: We found a high prevalence of extrapyramidal signs and symptoms in this group of male dental technicians working in a state technical high school in Rome. We believe that this finding may be due to the presence of toxins in the dental technician's work. [Abstract/Link to Full Text]

Leistad RB, Sand T, Nilsen KB, Westgaard RH, Stovner LJ
Cardiovascular responses to cognitive stress in patients with migraine and tension-type headache.
BMC Neurol. 2007;723.
BACKGROUND: The purpose of this study was to investigate the temporal relationship between autonomic changes and pain activation in migraine and tension-type headache induced by stress in a model relevant for everyday office-work. METHODS: We measured pain, blood pressure (BP), heart rate (HR) and skin blood flow (BF) during and after controlled low-grade cognitive stress in 22 migraineurs during headache-free periods, 18 patients with tension-type headache (TTH) and 44 healthy controls. The stress lasted for one hour and was followed by 30 minutes of relaxation. RESULTS: Cardiovascular responses to cognitive stress in migraine did not differ from those in control subjects. In TTH patients HR was maintained during stress, whereas it decreased for migraineurs and controls. A trend towards a delayed systolic BP response during stress was also observed in TTH. Finger BF recovery was delayed after stress and stress-induced pain was associated with less vasoconstriction in TTH during recovery. CONCLUSION: It is hypothesized that TTH patients have different stress adaptive mechanisms than controls and migraineurs, involving delayed cardiovascular adaptation and reduced pain control system inhibition. [Abstract/Link to Full Text]

Barzegar M, Dastgiri S, Karegarmaher MH, Varshochiani A
Epidemiology of childhood Guillan-Barre syndrome in the north west of Iran.
BMC Neurol. 2007;722.
BACKGROUND AND AIMS: This study was carried out to investigate the incidence, annual time trend and some epidemiological and clinical features of Guillain-Barre syndrome in children in the north west of Iran. MATERIALS AND METHODS: In this population-based cross sectional research, epidemiological and clinical features of 143 cases with Guillain-Barre syndrome between 2001 and 2006 were studied. The setting of the study was Tabriz Children Medical Centre, the major University-Hospital located in Tabriz city of the East Azarbaijan province covering whole region. Data collected included age, gender, chronological information, preceding events, functional grade of motor deficit. RESULTS: The mean age (standard deviation) of subjects was 5.4 (3.6) years. The male/female ratio was 1.3. The average annual incidence rate was 2.27 per 100 000 population of 15 years children (CI95%: 1.9-2.6). The majority of cases occurred in March, July and November and the highest proportion of the syndrome was observed in winter (29 percent, P > 0.10). CONCLUSION: The results indicated that an unexpected high incidence of Guillain-Barre syndrome has occurred in 2003 in the region. We concluded that a monitoring and surveillance system for Guillain-Barre syndrome is essential to set up in this region. [Abstract/Link to Full Text]

Atherton DD, Facer P, Roberts KM, Misra VP, Chizh BA, Bountra C, Anand P
Use of the novel Contact Heat Evoked Potential Stimulator (CHEPS) for the assessment of small fibre neuropathy: correlations with skin flare responses and intra-epidermal nerve fibre counts.
BMC Neurol. 2007;721.
BACKGROUND: The Contact Heat Evoked Potential Stimulator (CHEPS) rapidly stimulates cutaneous small nerve fibres, and resulting evoked potentials can be recorded from the scalp. We have studied patients with symptoms of sensory neuropathy and controls using CHEPS, and validated the findings using other objective measures of small nerve fibres i.e. the histamine-induced skin flare response and intra-epidermal fibres (IEF), and also quantitative sensory testing (QST), a subjective measure. METHODS: In patients with symptoms of sensory neuropathy (n = 41) and healthy controls (n = 9) we performed clinical examination, QST (monofilament, vibration and thermal perception thresholds), nerve conduction studies, histamine-induced skin flares and CHEPS. Skin punch biopsies were immunostained using standard ABC immunoperoxidase for the nerve marker PGP 9.5 or the heat and capsaicin receptor TRPV1. Immunoreactive IEF were counted per length of tissue section and epidermal thickness recorded. RESULTS: Amplitudes of Adelta evoked potentials (muV) following face, arm or leg stimulation were reduced in patients (e.g. for the leg: mean +/- SEM - controls 11.7 +/- 1.95, patients 3.63 +/- 0.85, p = 0.0032). Patients showed reduced leg skin flare responses, which correlated with Adelta amplitudes (rs = 0.40, p = 0.010). In patient leg skin biopsies, PGP 9.5- and TRPV1-immunoreactive IEF were reduced and correlated with Adelta amplitudes (PGP 9.5, rs = 0.51, p = 0.0006; TRPV1, rs = 0.48, p = 0.0012). CONCLUSION: CHEPS appears a sensitive measure, with abnormalities observed in some symptomatic patients who did not have significant IEF loss and/or QST abnormalities. Some of the latter patients may have early small fibre dysfunction or ion channelopathy. CHEPS provides a clinically practical, non-invasive and objective measure, and can be a useful additional tool for the assessment of sensory small fibre neuropathy. Although further evaluation is required, the technique shows potential clinical utility to differentiate neuropathy from other chronic pain states, and provide a biomarker for analgesic development. [Abstract/Link to Full Text]

Grosset KA, Grosset DG
Effect of educational intervention on medication timing in Parkinson's disease: a randomized controlled trial.
BMC Neurol. 2007;720.
BACKGROUND: Medicine usage in Parkinson's disease patients is often imperfect, in particular irregular timing of medication. The effect of informing Parkinson's disease patients about the continuous dopaminergic hypothesis (to encourage regular medicine intake) on medication adherence and motor control was tested. METHODS: Patients were randomised either to the active group (receiving the intervention) or control group (no extra information). Antiparkinson medicine usage was monitored for 3 months before and after the intervention using electronic pill bottles which record the date and time of opening (MEMS, Aardex, Switzerland) and data used to calculate the percentage of doses taken at correct time intervals. RESULTS: 43 patients (52%) were randomised to active counselling, and 40 (48%) were controls (standard management). The intervention effect (difference in timing adherence pre- to post-intervention between the 2 groups) was 13.4% (CI 5.1 to 21.7), p = 0.002. Parkinson motor scores did not change significantly (active group 0.1, CI -3.4 to 3.7) versus controls (4.5, CI 1.6 to 7.1), p = 0.06. CONCLUSION: Timing adherence, but not motor scores, improves by providing patients with extra information. Therapy timing is of potential importance in Parkinson's disease management. TRIAL REGISTRATION NUMBER: NCT00361205. [Abstract/Link to Full Text]

Braathen GJ, Sand JC, Bukholm G, Russell MB
Two novel connexin32 mutations cause early onset X-linked Charcot-Marie-Tooth disease.
BMC Neurol. 2007;719.
BACKGROUND: X-linked Charcot-Marie Tooth (CMT) is caused by mutations in the connexin32 gene that encodes a polypeptide which is arranged in hexameric array and form gap junctions. METHODS: We describe two novel mutations in the connexin32 gene in two Norwegian families. RESULTS: Family 1 had a c.225delG (R75fsX83) which causes a frameshift and premature stop codon at position 247. This probably results in a shorter non-functional protein structure. Affected individuals had an early age at onset usually in the first decade. The symptoms were more severe in men than women. All had severe muscle weakness in the legs. Several abortions were observed in this family. Family 2 had a c.536 G>A (C179Y) transition which causes a change of the highly conserved cysteine residue, i.e. disruption of at least one of three disulfide bridges. The mean age at onset was in the first decade. Muscle wasting was severe and correlated with muscle weakness in legs. The men and one woman also had symptom from their hands. The neuropathy is demyelinating and the nerve conduction velocities were in the intermediate range (25-49 m/s). Affected individuals had symmetrical clinical findings, while the neurophysiology revealed minor asymmetrical findings in nerve conduction velocity in 6 of 10 affected individuals. CONCLUSION: The two novel mutations in the connexin32 gene are more severe than the majority of previously described mutations possibly due to the severe structural change of the gap junction they encode. [Abstract/Link to Full Text]

Vendrame M, Azizi SA
Pyramidal and extrapyramidal dysfunction as a sequela of hypoxic injury: case report.
BMC Neurol. 2007;718.
BACKGROUND: The clinical and radiological aspects of hypoxic brain injury without ischemia are not well characterized. A spectrum of clinical manifestations have been observed in patients that recover from hypoxic brain injury, including a subset that demonstrate persistent motor system disturbances. Early Magnetic Resonance Imaging (MRI) studies have shown abnormalities in basal ganglia, cerebral and cerebellar cortex. CASE PRESENTATION: A 23-year-old man was affected by acute respiratory failure after drug overdose. His clinical condition progressed from coma to partial recovery with persistent lack of control and stiffness in the lower extremities. MRI of the brain showed evolving lesions in the cerebellum, globus pallidus and motor cortex that correlated with neurological signs. CONCLUSION: A careful analysis of this case and a review of the relevant literature indicate that the clinical residua after recovery from hypoxic injury to the brain is predominantly disorders of the motor system, and the MRI manifestations as well as the clinical presentation can evolve over time. Understanding more of the factors that affect hypoxic brain injury can be helpful in determining the clinical outcome and management of these patients. [Abstract/Link to Full Text]

Buss A, Pech K, Kakulas BA, Martin D, Schoenen J, Noth J, Brook GA
Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury.
BMC Neurol. 2007;717.
BACKGROUND: Matrix metalloproteinases (MMPs) are a family of extracellular endopeptidases that degrade the extracellular matrix and other extracellular proteins. Studies in experimental animals demonstrate that MMPs play a number of roles in the detrimental as well as in the beneficial events after spinal cord injury (SCI). In the present correlative investigation, the expression pattern of several MMPs and their inhibitors has been investigated in the human spinal cord. METHODS: An immunohistochemical investigation in post mortem samples of control and lesioned human spinal cords was performed. All patients with traumatic SCI had been clinically diagnosed as having "complete" injuries and presented lesions of the maceration type. RESULTS: In the unlesioned human spinal cord, MMP and TIMP immunoreactivity was scarce. After traumatic SCI, a lesion-induced bi-phasic pattern of raised MMP-1 levels could be found with an early up-regulation in macrophages within the lesion epicentre and a later induction in peri-lesional activated astrocytes. There was an early and brief induction of MMP-2 at the lesion core in macrophages. MMP-9 and -12 expression peaked at 24 days after injury and both molecules were mostly expressed in macrophages at the lesion epicentre. Whereas MMP-9 levels rose progressively from 1 week to 3 weeks, there was an isolated peak of MMP-12 expression at 24 days. The post-traumatic distribution of the MMP inhibitors TIMP-1, -2 and -3 was limited. Only occasional TIMP immuno-positive macrophages could be detected at short survival times. The only clear induction was detected for TIMP-3 at survival times of 8 months and 1 year in peri-lesional activated astrocytes. CONCLUSION: The involvement of MMP-1, -2, -9 and -12 has been demonstrated in the post-traumatic events after human SCI. With an expression pattern corresponding largely to prior experimental studies, they were mainly expressed during the first weeks after injury and were most likely involved in the destructive inflammatory events of protein breakdown and phagocytosis carried out by infiltrating neutrophils and macrophages, as well as being involved in enhanced permeability of the blood spinal cord barrier. Similar to animal investigations, the strong induction of MMPs was not accompanied by an expression of their inhibitors, allowing these proteins to exert their effects in the lesioned spinal cord. [Abstract/Link to Full Text]

Carne RP, O'Brien TJ, Kilpatrick CJ, Macgregor LR, Litewka L, Hicks RJ, Cook MJ
'MRI-negative PET-positive' temporal lobe epilepsy (TLE) and mesial TLE differ with quantitative MRI and PET: a case control study.
BMC Neurol. 2007;716.
BACKGROUND: 'MRI negative PET positive temporal lobe epilepsy' represents a substantial minority of temporal lobe epilepsy (TLE). Clinicopathological and qualitative imaging differences from mesial temporal lobe epilepsy are reported. We aimed to compare TLE with hippocampal sclerosis (HS+ve) and non lesional TLE without HS (HS-ve) on MRI, with respect to quantitative FDG-PET and MRI measures. METHODS: 30 consecutive HS-ve patients with well-lateralised EEG were compared with 30 age- and sex-matched HS+ve patients with well-lateralised EEG. Cerebral, cortical lobar and hippocampal volumetric and co-registered FDG-PET metabolic analyses were performed. RESULTS: There was no difference in whole brain, cerebral or cerebral cortical volumes. Both groups showed marginally smaller cerebral volumes ipsilateral to epileptogenic side (HS-ve 0.99, p = 0.02, HS+ve 0.98, p < 0.001). In HS+ve, the ratio of epileptogenic cerebrum to whole brain volume was less (p = 0.02); the ratio of epileptogenic cerebral cortex to whole brain in the HS+ve group approached significance (p = 0.06). Relative volume deficits were seen in HS+ve in insular and temporal lobes. Both groups showed marked ipsilateral hypometabolism (p < 0.001), most marked in temporal cortex. Mean hypointensity was more marked in epileptogenic-to-contralateral hippocampus in HS+ve (ratio: 0.86 vs 0.95, p < 0.001). The mean FDG-PET ratio of ipsilateral to contralateral cerebral cortex however was low in both groups (ratio: HS-ve 0.97, p < 0.0001; HS+ve 0.98, p = 0.003), and more marked in HS-ve across all lobes except insula. CONCLUSION: Overall, HS+ve patients showed more hippocampal, but also marginally more ipsilateral cerebral and cerebrocortical atrophy, greater ipsilateral hippocampal hypometabolism but similar ipsilateral cerebral cortical hypometabolism, confirming structural and functional differences between these groups. [Abstract/Link to Full Text]

Grossi E, Buscema MP, Snowdon D, Antuono P
Neuropathological findings processed by artificial neural networks (ANNs) can perfectly distinguish Alzheimer's patients from controls in the Nun Study.
BMC Neurol. 2007;715.
BACKGROUND: Many reports have described that there are fewer differences in AD brain neuropathologic lesions between AD patients and control subjects aged 80 years and older, as compared with the considerable differences between younger persons with AD and controls. In fact some investigators have suggested that since neurofibrillary tangles (NFT) can be identified in the brains of non-demented elderly subjects they should be considered as a consequence of the aging process. At present, there are no universally accepted neuropathological criteria which can mathematically differentiate AD from healthy brain in the oldest old. The aim of this study is to discover the hidden and non-linear associations among AD pathognomonic brain lesions and the clinical diagnosis of AD in participants in the Nun Study through Artificial Neural Networks (ANNs) analysis METHODS: The analyses were based on 26 clinically- and pathologically-confirmed AD cases and 36 controls who had normal cognitive function. The inputs used for the analyses were just NFT and neuritic plaques counts in neocortex and hippocampus, for which, despite substantial differences in mean lesions counts between AD cases and controls, there was a substantial overlap in the range of lesion counts. RESULTS: By taking into account the above four neuropathological features, the overall predictive capability of ANNs in sorting out AD cases from normal controls reached 100%. The corresponding accuracy obtained with Linear Discriminant Analysis was 92.30%. These results were consistently obtained in ten independent experiments. The same experiments were carried out with ANNs on a subgroup of 13 non severe AD patients and on the same 36 controls. The results obtained in terms of prediction accuracy with ANNs were exactly the same. Input relevance analysis confirmed the relative dominance of NFT in neocortex in discriminating between AD patients and controls and indicated the lesser importance played by NP in the hippocampus. CONCLUSION: The results of this study suggest that: a) cortical NFT represent the key variable in AD neuropathology; b) the neuropathologic profile of AD subjects is complex, however, c) ANNs can analyze neuropathologic features and differentiate AD cases from controls. [Abstract/Link to Full Text]

Lee JW, Namkoong H, Kim HK, Kim S, Hwang DW, Na HR, Ha SA, Kim JR, Kim JW
Fibrinogen gamma-A chain precursor in CSF: a candidate biomarker for Alzheimer's disease.
BMC Neurol. 2007;714.
BACKGROUND: Cerebrospinal fluid (CSF) may be valuable for exploring protein markers for the diagnosis of Alzheimer's disease (AD). The prospect of early detection and treatment, to slow progression, holds hope for aging populations with increased average lifespan. The aim of the present study was to investigate candidate CSF biological markers in patients with mild cognitive impairment (MCI) and AD and compare them with age-matched normal control subjects. METHODS: We applied proteomics approaches to analyze CSF samples derived from 27 patients with AD, 3 subjects with MCI and 30 controls. The AD group was subdivided into three groups by clinical severity according to clinical dementia rating (CDR), a well known clinical scale for dementia. RESULTS: We demonstrated an elevated level of fibrinogen gamma-A chain precursor protein in CSF from patients with mild cognitive impairment and AD compared to the age-matched normal subjects. Moreover, its expression was more prominent in the AD group than in the MCI and correlated with disease severity and progression. In contrast, fibrinogen gamma-A chain precursor protein was detected very low in the age-matched normal group. CONCLUSION: These findings suggest that the CSF level of fibrinogen gamma-A chain precursor may be a candidate biomarker for AD. [Abstract/Link to Full Text]

Davanipour Z, Tseng CC, Lee PJ, Sobel E
A case-control study of occupational magnetic field exposure and Alzheimer's disease: results from the California Alzheimer's Disease Diagnosis and Treatment Centers.
BMC Neurol. 2007;713.
BACKGROUND: A few studies have investigated a possible relationship between Alzheimer's disease (AD) and occupations with extremely low frequency magnetic field (MF) exposure. The purpose of this study was to further evaluate this possible association in a large patient population with expert diagnoses. METHODS: Subjects came from the 8 of the 9 California Alzheimer's Disease Diagnostic and Treatment Centers not previously used in an earlier study. Cases had probable or definite AD; controls primarily had a dementia-related problem other than vascular dementia (VaD) and some were not demented upon expert examination. Occupations were classified as having low, medium or high MF exposure, based upon previous research, replicating the exposure methodology used in our previous published studies. RESULTS: Occupational information was available for 98.6% of the 1527 cases and 98.5% of the 404 controls with age-at-initial examination known to be at least 65. Among cases, 2.1% and 5.4% had high and medium occupational MF exposure, respectively, while among controls the percentages were 0.8% and 3.0%. In univariate analyses, the odds ratio (OR) for subjects with medium or high MF exposures combined was 2.1 (p < 0.01), while for high exposure alone the OR was 2.9 (p < 0.08). Two models were used in multivariate analyses, with gender, stroke, and either age-at-onset or age-at-initial examination as covariates. The ORs for MF exposure varied little between the two models: 2.2 (p < 0.02) and 1.9 (p < 0.03) for medium or high exposure; 2.7 (p < 0.11) and 3.2 (p < 0.12) for high exposure. OR estimates for females were higher than for males, but not significantly higher. There were no material differences between the ORs resulting from univariate and multivariate analyses. CONCLUSION: Elevated occupational MF exposure was associated with an increased risk of AD. Based on previous published studies, the results likely pertain to the general population. [Abstract/Link to Full Text]

Schubert J, Weissbrich B
Detection of virus-specific intrathecally synthesised immunoglobulin G with a fully automated enzyme immunoassay system.
BMC Neurol. 2007;712.
BACKGROUND: The determination of virus-specific immunoglobulin G (IgG) antibodies in cerebrospinal fluid (CSF) is useful for the diagnosis of virus associated diseases of the central nervous system (CNS) and for the detection of a polyspecific intrathecal immune response in patients with multiple sclerosis. Quantification of virus-specific IgG in the CSF is frequently performed by calculation of a virus-specific antibody index (AI). Determination of the AI is a demanding and labour-intensive technique and therefore automation is desirable. We evaluated the precision and the diagnostic value of a fully automated enzyme immunoassay for the detection of virus-specific IgG in serum and CSF using the analyser BEP2000 (Dade Behring). METHODS: The AI for measles, rubella, varicella-zoster, and herpes simplex virus IgG was determined from pairs of serum and CSF samples of patients with viral CNS infections, multiple sclerosis and of control patients. CSF and serum samples were tested simultaneously with reference to a standard curve. Starting dilutions were 1:6 and 1:36 for CSF and 1:1386 and 1:8316 for serum samples. RESULTS: The interassay coefficient of variation was below 10% for all parameters tested. There was good agreement between AIs obtained with the BEP2000 and AIs derived from the semi-automated reference method. CONCLUSION: Determination of virus-specific IgG in serum-CSF-pairs for calculation of AI has been successfully automated on the BEP2000. Current limitations of the assay layout imposed by the analyser software should be solved in future versions to offer more convenience in comparison to manual or semi-automated methods. [Abstract/Link to Full Text]

Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P
Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy.
BMC Neurol. 2007;711.
BACKGROUND: Transient receptor potential (TRP) receptors expressed by primary sensory neurons mediate thermosensitivity, and may play a role in sensory pathophysiology. We previously reported that human dorsal root ganglion (DRG) sensory neurons co-expressed TRPV1 and TRPV3, and that these were increased in injured human DRG. Related receptors TRPV4, activated by warmth and eicosanoids, and TRPM8, activated by cool and menthol, have been characterised in pre-clinical models. However, the role of TRPs in common clinical sensory neuropathies needs to be established. METHODS: We have studied TRPV1, TRPV3, TRPV4, and TRPM8 in nerves (n = 14) and skin from patients with nerve injury, avulsed dorsal root ganglia (DRG) (n = 11), injured spinal nerve roots (n = 9), diabetic neuropathy skin (n = 8), non-diabetic neuropathic nerve biopsies (n = 6), their respective control tissues, and human post mortem spinal cord, using immunohistological methods. RESULTS: TRPV1 and TRPV3 were significantly increased in injured brachial plexus nerves, and TRPV1 in hypersensitive skin after nerve repair, whilst TRPV4 was unchanged. TRPM8 was detected in a few medium diameter DRG neurons, and was unchanged in DRG after avulsion injury, but was reduced in axons and myelin in injured nerves. In diabetic neuropathy skin, TRPV1 expressing sub- and intra-epidermal fibres were decreased, as was expression in surviving fibres. TRPV1 was also decreased in non-diabetic neuropathic nerves. Immunoreactivity for TRPV3 was detected in basal keratinocytes, with a significant decrease of TRPV3 in diabetic skin. TRPV1-immunoreactive nerves were present in injured dorsal spinal roots and dorsal horn of control spinal cord, but not in ventral roots, while TRPV3 and TRPV4 were detected in spinal cord motor neurons. CONCLUSION: The accumulation of TRPV1 and TRPV3 in peripheral nerves after injury, in spared axons, matches our previously reported changes in avulsed DRG. Reduction of TRPV1 levels in nerve fibres in diabetic neuropathy skin may result from the known decrease of nerve growth factor (NGF) levels. The role of TRPs in keratinocytes is unknown, but a relationship to changes in NGF levels, which is produced by keratinocytes, deserves investigation. TRPV1 represents a more selective therapeutic target than other TRPs for pain and hypersensitivity, particularly in post-traumatic neuropathy. [Abstract/Link to Full Text]


Recent Articles in Journal of Neuroinflammation

Chen Y, Bodles AM
Amyloid precursor protein modulates beta-catenin degradation.
J Neuroinflammation. 2007 Dec 10;4(1):29.
ABSTRACT: BACKGROUND: The amyloid precursor protein (APP) is genetically associated with Alzheimer's disease (AD). Elucidating the function of APP should help understand AD pathogenesis and provide insights into therapeutic designs against this devastating neurodegenerative disease. RESULTS: We demonstrate that APP expression in primary neurons induces beta-catenin phosphorylation at Ser-33, Ser-37, and Thr-41 (S33/37/T41) residues, which is a prerequisite for beta-catenin ubiquitinylation and proteasomal degradation. APP-induced phosphorylation of beta-catenin resulted in reduction of total beta-catenin levels, suggesting that APP expression promotes beta-catenin degradation. In contrast, treatment of neurons with APP siRNAs increased total beta-catenin levels and decreased beta-catenin phosphorylation at residues S33/37/T41. Further, beta-catenin was dramatically increased in hippocampal CA1 pyramidal cells from APP knockout animals. Acute expression of wild type APP or of familial AD APP mutants in primary neurons downregulated beta-catenin in membrane and cytosolic fractions, and did not appear to affect nuclear beta-catenin or beta-catenin-dependent transcription. Conversely, in APP knockout CA1 pyramidal cells, accumulation of beta-catenin was associated with the upregulation of cyclin D1, a downstream target of beta-catenin signaling. Together, these data establish that APP downregulates beta-catenin and suggest a role for APP in sustaining neuronal function by preventing cell cycle reactivation and maintaining synaptic integrity. CONCLUSIONS: We have provided strong evidence that APP modulates beta-catenin degradation in vitro and in vivo. Future studies may investigate whether APP processing is necessary for beta-catenin degradation, and determine if excessive APP expression contributes to AD pathogenesis through abnormal beta-catenin downregulation. [Abstract/Link to Full Text]

Miller BA, Crum JM, Tovar CA, Ferguson AR, Bresnahan JC, Beattie MS
Developmental stage of oligodendrocytes determines their response to activated microglia in vitro.
J Neuroinflammation. 2007 Nov 26;4(1):28.
ABSTRACT: BACKGROUND: Oligodendrocyte progenitor cells (OPCs) and mature oligodendrocytes are both lost in central nervous system injury and disease. Activated microglia may play a role in OPC and oligodendrocyte loss or replacement, but it is not clear how the responses of OPCs and oligodendrocytes to activated microglia differ. METHODS: OPCs and microglia were isolated from rat cortex. OPCs were induced to differentiate into oligodendrocytes with thyroid hormone in defined medium. For selected experiments, microglia were added to OPC or oligodendrocyte cultures. Lipopolysaccharide was used to activate microglia and microglial activation was confirmed by TNFalpha ELISA. Cell survival was assessed with immunocytochemistry and cell counts. OPC proliferation and oligodendrocyte apoptosis were also assessed. RESULTS: OPCs and oligodendrocytes displayed phenotypes representative of immature and mature oligodendrocytes, respectively. Activated microglia reduced OPC survival, but increased survival and reduced apoptosis of mature oligodendrocytes. Activated microglia also underwent cell death themselves. CONCLUSIONS: Activated microglia may have divergent effects on OPCs and mature oligodendrocytes, reducing OPC survival and increasing mature oligodendrocyte survival. This may be of importance because activated microglia are present in several disease states where both OPCs and mature oligodendrocytes are also reacting to injury. Activated microglia may simultaneously have deleterious and helpful effects on different cells after central nervous system injury. [Abstract/Link to Full Text]

Yang CS, Lee HM, Lee JY, Kim JA, Lee SJ, Shin DM, Lee YH, Lee DS, El-Benna J, Jo EK
Reactive oxygen species and p47phox activation are essential for the Mycobacterium tuberculosis-induced pro-inflammatory response in murine microglia.
J Neuroinflammation. 2007 Nov 26;4(1):27.
ABSTRACT: BACKGROUND: Activated microglia elicits a robust amount of pro-inflammatory cytokines, which are implicated in the pathogenesis of tuberculosis in the central nervous system (CNS). However, little is known about the intracellular signaling mechanisms governing these inflammatory responses in microglia in response to Mycobacterium tuberculosis (Mtb). METHODS: Murine microglial BV-2 cells and primary mixed glial cells were stimulated with sonicated Mtb (s-Mtb). Intracellular ROS levels were measured by staining with oxidative fluorescent dyes [2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidium (DHE)]. NADPH oxidase activities were measured by lucigenin chemiluminescence assay. S-Mtb-induced MAPK activation and pro-inflammatory cytokine release in microglial cells were measured using by Western blot analysis and enzyme-linked immunosorbent assay, respectively. RESULTS: We demonstrate that s-Mtb promotes the up-regulation of reactive oxygen species (ROS) and the rapid activation of mitogen-activated protein kinases (MAPKs), including p38 and extracellular signal-regulated kinase (ERK) 1/2, as well as the secretion of tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and IL-12p40 in murine microglial BV-2 cells and primary mixed glial cells. Both NADPH oxidase and mitochondrial electron transfer chain subunit I play an indispensable role in s-Mtb-induced MAPK activation and pro-inflammatory cytokine production in BV-2 cells and mixed glial cells. Furthermore, the activation of cytosolic NADPH oxidase p47phox and MAPKs (p38 and ERK1/2) is mutually dependent on s-Mtb-induced inflammatory signaling in murine microglia. Neither TLR2 nor dectin-1 was involved in s-Mtb-induced inflammatory responses in murine microglia. CONCLUSIONS: These data collectively demonstrate that s-Mtb actively induces the pro-inflammatory response in microglia through NADPH oxidase-dependent ROS generation, although the specific pattern-recognition receptors involved in these responses remain to be identified. [Abstract/Link to Full Text]

Saura J
Microglial cells in astroglial cultures: a cautionary note.
J Neuroinflammation. 2007 Oct 15;4(1):26.
ABSTRACT: Primary rodent astroglial-enriched cultures are the most popular model to study astroglial biology in vitro. From the original methods described in the 1970's a great number of minor modifications have been incorporated into these protocols by different laboratories. These protocols result in cultures in which the astrocyte is the predominant cell type, but astrocytes are never 100% of cells in these preparations. The aim of this review is to bring attention to the presence of microglia in astroglial cultures because, in my opinion, the proportion of and the role that microglial cells play in astroglial cultures are often underestimated. The main problem with ignoring microglia in these cultures is that relatively minor amounts of microglia can be responsible for effects observed on cultures in which the astrocyte is the most abundant cell type. If the relative contributions of astrocytes and microglia are not properly assessed an observed effect can be erroneously attributed to the astrocytes. In order to illustrate this point the case of NO production in activated astroglial-enriched cultures is examined. Lipopolysaccharide (LPS) induces nitric oxide (NO) production in astroglial-enriched cultures and this effect is very often attributed to astrocytes. However, a careful review of the published data suggests that LPS-induced NO production in rodent astroglial-enriched cultures is likely to be mainly microglial in origin. This review considers cell culture protocol factors that can affect the proportion of microglial cells in astroglial cultures, strategies to minimize the proportion of microglia in these cultures, and specific markers that allow the determination of such microglial proportions. [Abstract/Link to Full Text]

Candelario-Jalil E, de Oliveira AC, Gräf S, Bhatia HS, Hüll M, Muñoz E, Fiebich BL
Resveratrol potently reduces prostaglandin E2 production and free radical formation in lipopolysaccharide-activated primary rat microglia.
J Neuroinflammation. 2007;425.
BACKGROUND: Neuroinflammatory responses are triggered by diverse ethiologies and can provide either beneficial or harmful results. Microglial cells are the major cell type involved in neuroinflammation, releasing several mediators, which contribute to the neuronal demise in several diseases including cerebral ischemia and neurodegenerative disorders. Attenuation of microglial activation has been shown to confer protection against different types of brain injury. Recent evidence suggests that resveratrol has anti-inflammatory and potent antioxidant properties. It has been also shown that resveratrol is a potent inhibitor of cyclooxygenase (COX)-1 activity. Previous findings have demonstrated that this compound is able to reduce neuronal injury in different models, both in vitro and in vivo. The aim of this study was to examine whether resveratrol is able to reduce prostaglandin E2 (PGE2) and 8-iso-prostaglandin F2alpha (8-iso-PGF2 alpha) production by lipopolysaccharide (LPS)-activated primary rat microglia. METHODS: Primary microglial cell cultures were prepared from cerebral cortices of neonatal rats. Microglial cells were stimulated with 10 ng/ml of LPS in the presence or absence of different concentrations of resveratrol (1-50 microM). After 24 h incubation, culture media were collected to measure the production of PGE2 and 8-iso-PGF2 alpha using enzyme immunoassays. Protein levels of COX-1, COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) were studied by Western blotting after 24 h of incubation with LPS. Expression of mPGES-1 at the mRNA level was investigated using reverse transcription-polymerase chain reaction (RT-PCR) analysis. RESULTS: Our results indicate that resveratrol potently reduced LPS-induced PGE2 synthesis and the formation of 8-iso-PGF2 alpha, a measure of free radical production. Interestingly, resveratrol dose-dependently reduced the expression (mRNA and protein) of mPGES-1, which is a key enzyme responsible for the synthesis of PGE2 by activated microglia, whereas resveratrol did not affect the expression of COX-2. Resveratrol is therefore the first known inhibitor which specifically prevents mPGES-1 expression without affecting COX-2 levels. Another important observation of the present study is that other COX-1 selective inhibitors (SC-560 and Valeroyl Salicylate) potently reduced PGE2 and 8-iso-PGF2 alpha production by LPS-activated microglia. CONCLUSION: These findings suggest that the naturally occurring polyphenol resveratrol is able to reduce microglial activation, an effect that might help to explain its neuroprotective effects in several in vivo models of brain injury. [Abstract/Link to Full Text]

Toft-Hansen H, Babcock AA, Millward JM, Owens T
Downregulation of membrane type-matrix metalloproteinases in the inflamed or injured central nervous system.
J Neuroinflammation. 2007;424.
ABSTRACT: BACKGROUND: Matrix metalloproteinases (MMPs) are thought to mediate cellular infiltration in central nervous system (CNS) inflammation by cleaving extracellular matrix proteins associated with the blood-brain barrier. The family of MMPs includes 23 proteinases, including six membrane type-MMPs (MT-MMPs). Leukocyte infiltration is an integral part of the pathogenesis of autoimmune inflammation in the CNS, as occurs in multiple sclerosis and its animal model experimental autoimmune encephalomyelitis (EAE), as well as in the response to brain trauma and injury. We have previously shown that gene expression of the majority of MMPs was upregulated in the spinal cord of SJL mice with severe EAE induced by adoptive transfer of myelin basic protein-reactive T cells, whereas four of the six MT-MMPs (MMP-15, 16, 17 and 24) were downregulated. The two remaining MT-MMPs (MMP-14 and 25) were upregulated in whole tissue. METHODS: We used in vivo models of CNS inflammation and injury to study expression of MT-MMP and cytokine mRNA by real-time RT-PCR. Expression was also assessed in microglia sorted from CNS by flow cytometry, and in primary microglia cultures following treatment with IFNgamma. RESULTS: We now confirm the expression pattern of MT-MMPs in the B6 mouse, independent of effects of adjuvant. We further show expression of all the MT-MMPs, except MMP-24, in microglia. Microglia isolated from mice with severe EAE showed statistically significant downregulation of MMP-15, 17 and 25 and lack of increase in levels of other MT-MMPs. Downregulation of MT-MMPs was also apparent following CNS injury. The pattern of regulation of MT-MMPs in neuroinflammation showed no association with expression of the proinflammatory cytokines TNFalpha, IL-1beta, or IFNgamma. CONCLUSION: CNS inflammation and injury leads to downregulation in expression of the majority of MT-MMPs. Microglia in EAE showed a general downregulation of MT-MMPs, and our findings suggest that MT-MMP levels may inversely correlate with microglial reactivity. [Abstract/Link to Full Text]

Qian L, Xu Z, Zhang W, Wilson B, Hong JS, Flood PM
Sinomenine, a natural dextrorotatory morphinan analog, is anti-inflammatory and neuroprotective through inhibition of microglial NADPH oxidase.
J Neuroinflammation. 2007;423.
BACKGROUND: The mechanisms involved in the induction and regulation of inflammation resulting in dopaminergic (DA) neurotoxicity in Parkinson's disease (PD) are complex and incompletely understood. Microglia-mediated inflammation has recently been implicated as a critical mechanism responsible for progressive neurodegeneration. METHODS: Mesencephalic neuron-glia cultures and reconstituted cultures were used to investigate the molecular mechanisms of sinomenine (SN)-mediated anti-inflammatory and neuroprotective effects in both the lipopolysaccharide (LPS)- and the 1-methyl-4-phenylpyridinium (MPP+)-mediated models of PD. RESULTS: SN showed equivalent efficacy in protecting against DA neuron death in rat midbrain neuron-glial cultures at both micro- and sub-picomolar concentrations, but no protection was seen at nanomolar concentrations. The neuroprotective effect of SN was attributed to inhibition of microglial activation, since SN significantly decreased tumor necrosis factor-alpha (TNF-alpha, prostaglandin E2 (PGE2) and reactive oxygen species (ROS) production by microglia. In addition, from the therapeutic point of view, we focused on sub-picomolar concentration of SN for further mechanistic studies. We found that 10(-14) M of SN failed to protect DA neurons against MPP+-induced toxicity in the absence of microglia. More importantly, SN failed to show a protective effect in neuron-glia cultures from mice lacking functional NADPH oxidase (PHOX), a key enzyme for extracellular superoxide production in immune cells. Furthermore, we demonstrated that SN reduced LPS-induced extracellular ROS production through the inhibition of the PHOX cytosolic subunit p47phoxtranslocation to the cell membrane. CONCLUSION: Our findings strongly suggest that the protective effects of SN are most likely mediated through the inhibition of microglial PHOX activity. These findings suggest a novel therapy to treat inflammation-mediated neurodegenerative diseases. [Abstract/Link to Full Text]

Fan R, DeFilippis K, Van Nostrand WE
Induction of complement proteins in a mouse model for cerebral microvascular A beta deposition.
J Neuroinflammation. 2007;422.
The deposition of amyloid beta-protein (A beta) in cerebral vasculature, known as cerebral amyloid angiopathy (CAA), is a common pathological feature of Alzheimer's disease and related disorders. In familial forms of CAA single mutations in the A beta peptide have been linked to the increase of vascular A beta deposits accompanied by a strong localized activation of glial cells and elevated expression of neuroinflammatory mediators including complement proteins. We have developed human amyloid-beta precursor protein transgenic mice harboring two CAA A beta mutations (Dutch E693Q and Iowa D694N) that mimic the prevalent cerebral microvascular A beta deposition observed in those patients, and the Swedish mutations (K670N/M671L) to increase A beta production. In these Tg-SwDI mice, we have reported predominant fibrillar A beta along microvessels in the thalamic region and diffuse plaques in cortical region. Concurrently, activated microglia and reactive astrocytes have been detected primarily in association with fibrillar cerebral microvascular A beta in this model. Here we show that three native complement components in classical and alternative complement pathways, C1q, C3, and C4, are elevated in Tg-SwDI mice in regions rich in fibrillar microvascular A beta. Immunohistochemical staining of all three proteins was increased in thalamus, hippocampus, and subiculum, but not frontal cortex. Western blot analysis showed significant increases of all three proteins in the thalamic region (with hippocampus) as well as the cortical region, except C3 that was below detection level in cortex. Also, in the thalamic region (with hippocampus), C1q and C3 mRNAs were significantly up-regulated. These complement proteins appeared to be expressed largely by activated microglial cells associated with the fibrillar microvascular A beta deposits. Our findings demonstrate that Tg-SwDI mice exhibit elevated complement protein expression in response to fibrillar vascular A beta deposition that is observed in patients with familial CAA. [Abstract/Link to Full Text]

Munoz L, Ranaivo HR, Roy SM, Hu W, Craft JM, McNamara LK, Chico LW, Van Eldik LJ, Watterson DM
A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model.
J Neuroinflammation. 2007;421.
BACKGROUND: An accumulating body of evidence is consistent with the hypothesis that excessive or prolonged increases in proinflammatory cytokine production by activated glia is a contributor to the progression of pathophysiology that is causally linked to synaptic dysfunction and hippocampal behavior deficits in neurodegenerative diseases such as Alzheimer's disease (AD). This raises the opportunity for the development of new classes of potentially disease-modifying therapeutics. A logical candidate CNS target is p38 alpha MAPK, a well-established drug discovery molecular target for altering proinflammatory cytokine cascades in peripheral tissue disorders. Activated p38 MAPK is seen in human AD brain tissue and in AD-relevant animal models, and cell culture studies strongly implicate p38 MAPK in the increased production of proinflammatory cytokines by glia activated with human amyloid-beta (A beta) and other disease-relevant stressors. However, the vast majority of small molecule drugs do not have sufficient penetrance of the blood-brain barrier to allow their use as in vivo research tools or as therapeutics for neurodegenerative disorders. The goal of this study was to test the hypothesis that brain p38 alpha MAPK is a potential in vivo target for orally bioavailable, small molecules capable of suppressing excessive cytokine production by activated glia back towards homeostasis, allowing an improvement in neurologic outcomes. METHODS: A novel synthetic small molecule based on a molecular scaffold used previously was designed, synthesized, and subjected to analyses to demonstrate its potential in vivo bioavailability, metabolic stability, safety and brain uptake. Testing for in vivo efficacy used an AD-relevant mouse model. RESULTS: A novel, CNS-penetrant, non-toxic, orally bioavailable, small molecule inhibitor of p38 alpha MAPK (MW01-2-069A-SRM) was developed. Oral administration of the compound at a low dose (2.5 mg/kg) resulted in attenuation of excessive proinflammatory cytokine production in the hippocampus back towards normal in the animal model. Animals with attenuated cytokine production had reductions in synaptic dysfunction and hippocampus-dependent behavioral deficits. CONCLUSION: The p38 alpha MAPK pathway is quantitatively important in the A beta-induced production of proinflammatory cytokines in hippocampus, and brain p38 alpha MAPK is a viable molecular target for future development of potential disease-modifying therapeutics in AD and related neurodegenerative disorders. [Abstract/Link to Full Text]

Xue QS, Sparks DL, Streit WJ
Microglial activation in the hippocampus of hypercholesterolemic rabbits occurs independent of increased amyloid production.
J Neuroinflammation. 2007;420.
ABSTRACT: BACKGROUND: Rabbits maintained on high-cholesterol diets are known to show increased immunoreactivity for amyloid beta protein in cortex and hippocampus, an effect that is amplified by presence of copper in the drinking water. Hypercholesterolemic rabbits also develop sporadic neuroinflammatory changes. The purpose of this study was to survey microglial activation in rabbits fed cholesterol in the presence or absence of copper or other metal ions, such as zinc and aluminum. METHODS: Vibratome sections of the rabbit hippocampus and overlying cerebral cortex were examined for microglial activation using histochemistry with isolectin B4 from Griffonia simplicifolia. Animals were scored as showing either focal or diffuse microglial activation with or without presence of rod cells. RESULTS: Approximately one quarter of all rabbits fed high-cholesterol diets showed evidence of microglial activation, which was always present in the hippocampus and not in the cortex. Microglial activation was not correlated spatially with increased amyloid immunoreactivity or with neurodegenerative changes and was most pronounced in hypercholesterolemic animals whose drinking water had been supplemented with either copper or zinc. Controls maintained on normal chow were largely devoid of neuroinflammatory changes, but revealed minimal microglial activation in one case. CONCLUSION: Because the increase in intraneuronal amyloid immunoreactivity that results from administration of cholesterol occurs in both cerebral cortex and hippocampus, we deduce that the microglial activation reported here, which is limited to the hippocampus, occurs independent of amyloid accumulation. Furthermore, since neuroinflammation occurred in the absence of detectable neurodegenerative changes, and was also not accompanied by increased astrogliosis, we conclude that microglial activation occurs because of metabolic or biochemical derangements that are influenced by dietary factors. [Abstract/Link to Full Text]

Abuirmeileh A, Harkavyi A, Lever R, Biggs CS, Whitton PS
Urocortin, a CRF-like peptide, restores key indicators of damage in the substantia nigra in a neuroinflammatory model of Parkinson's disease.
J Neuroinflammation. 2007;419.
We have recently observed that the corticotrophin releasing hormone (CRF) related peptide urocortin (UCN) reverses key features of nigrostriatal damage in the hemiparkinsonian 6-hydroxydopamine lesioned rat. Here we have studied whether similar effects are also evident in the lipopolysaccaride (LPS) neuroinflammatory paradigm of Parkinson's disease (PD). To do this we have measured restoration of normal motor behaviour, retention of nigral dopamine (DA) and also tyrosine hydroxylase (TH) activity. Fourteen days following intranigral injections of LPS and UCN, rats showed only modest circling after DA receptor stimulation with apomorphine, in contrast to those given LPS and vehicle where circling was pronounced. In separate experiments, rats received UCN seven days following LPS, and here apomorphine challenge caused near identical circling intensity to those that received LPS and UCN concomitantly. In a similar and consistent manner with the preservation of motor function, UCN 'protected' the nigra from both DA depletion and loss of TH activity, indicating preservation of DA cells. The effects of UCN were antagonised by the non-selective CRF receptor antagonist alpha-helical CRF and were not replicated by the selective CRF2 ligand UCN III. This suggests that UCN is acting via CRF1 receptors, which have been shown to be anti-inflammatory in the periphery. Our data therefore indicate that UCN is capable of maintaining adequate nigrostriatal function in vivo, via CRF1 receptors following a neuro-inflammatory challenge. This has potential therapeutic implications in PD. [Abstract/Link to Full Text]

Xiang Z, Lin T, Reeves SA
15d-PGJ2 induces apoptosis of mouse oligodendrocyte precursor cells.
J Neuroinflammation. 2007;418.
BACKGROUND: Prostaglandin (PG) production is associated with inflammation, a major feature in multiple sclerosis (MS) that is characterized by the loss of myelinating oligodendrocytes in the CNS. While PGs have been shown to have relevance in MS, it has not been determined whether PGs have a direct effect on cells within the oligodendrocyte lineage. METHODS: Undifferentiated or differentiated mouse oligodendrocyte precursor (mOP) cells were treated with PGE2, PGF2alpha, PGD2 or 15-deoxy-Delta12,14-PGJ2 (15d-PGJ2). Cell growth and survival following treatment were examined using cytotoxicity assays and apoptosis criteria. The membrane receptors for PGD2 and the nuclear receptor peroxisome proliferator-activated receptor (PPAR)gamma, as well as reactive oxygen species (ROS) in the death mechanism were examined. RESULTS: PGE2 and PGF2alpha had minimal effects on the growth and survival of mOP cells. In contrast, PGD2 and 15d-PGJ2 induced apoptosis of undifferentiated mOP cells at relatively low micromolar concentrations. 15d-PGJ2 was less toxic to differentiated mOP cells. Apoptosis was independent of membrane receptors for PGD2 and the nuclear receptor PPARgamma. The cytotoxicity of 15d-PGJ2 was associated with the production of ROS and was inversely related to intracellular glutathione (GSH) levels. However, the cytotoxicity of 15d-PGJ2 was not decreased by the free radical scavengers ascorbic acid or alpha-tocopherol. CONCLUSION: Taken together, these results demonstrated that 15d-PGJ2 is toxic to early stage OP cells, suggesting that 15d-PGJ2 may represent a deleterious factor in the natural remyelination process in MS. [Abstract/Link to Full Text]

Williams AJ, Wei HH, Dave JR, Tortella FC
Acute and delayed neuroinflammatory response following experimental penetrating ballistic brain injury in the rat.
J Neuroinflammation. 2007;417.
BACKGROUND: Neuroinflammation following acute brain trauma is considered to play a prominent role in both the pathological and reconstructive response of the brain to injury. Here we characterize and contrast both an acute and delayed phase of inflammation following experimental penetrating ballistic brain injury (PBBI) in rats out to 7 days post-injury. METHODS: Quantitative real time PCR (QRT-PCR) was used to evaluate changes in inflammatory gene expression from the brain tissue of rats exposed to a unilateral frontal PBBI. Brain histopathology was assessed using hematoxylin and eosin (H&E), silver staining, and immunoreactivity for astrocytes (GFAP), microglia (OX-18) and the inflammatory proteins IL-1beta and ICAM-1. RESULTS: Time course analysis of gene expression levels using QRT-PCR indicated a peak increase during the acute phase of the injury between 3-6 h for the cytokines TNF-alpha (8-11 fold), IL-1beta (11-13 fold), and IL-6 (40-74 fold) as well as the cellular adhesion molecules VCAM (2-3 fold), ICAM-1 (7-15 fold), and E-selectin (11-13 fold). Consistent with the upregulation of pro-inflammatory genes, peripheral blood cell infiltration was a prominent post-injury event with peak levels of infiltrating neutrophils (24 h) and macrophages (72 h) observed throughout the core lesion. In regions of the forebrain immediately surrounding the lesion, strong immunoreactivity for activated astrocytes (GFAP) was observed as early as 6 h post-injury followed by prominent microglial reactivity (OX-18) at 72 h and resolution of both cell types in cortical brain regions by day 7. Delayed thalamic inflammation (remote from the primary lesion) was also observed as indicated by both microglial and astrocyte reactivity (72 h to 7 days) concomitant with the presence of fiber degeneration (silver staining). CONCLUSION: In summary, PBBI induces both an acute and delayed neuroinflammatory response occurring in distinct brain regions, which may provide useful diagnostic information for the treatment of this type of brain injury. [Abstract/Link to Full Text]

Minagar A, Adamashvili I, Kelley RE, Gonzalez-Toledo E, McLarty J, Smith SJ
Saliva soluble HLA as a potential marker of response to interferon-beta 1a in multiple sclerosis: a preliminary study.
J Neuroinflammation. 2007;416.
OBJECTIVE: Potential surrogate markers of disease activity, including response to therapy, are particularly important in a neurological disorder such as multiple sclerosis (MS) which often has a fluctuating course. Based upon previous studies in our laboratory, we hypothesized that measurement of soluble HLA (sHLA) molecules class II in saliva of MS patients can serve as marker of therapeutic response to high dose interferon beta-1a. METHODS: We measured the expression patterns of sHLA-II in saliva in 17 patients with relapsing/remitting MS and compared the results to clinical course and brain MRI. For comparison purposes we also assayed the saliva sHLA-II levels in 53 normal control subjects. Solid phase ELISA was used for measurement of sHLA-I and sHLA-II concentrations at baseline and after three and six months of treatment with high dose interferon beta-1a (IFN beta-1a). RESULTS: The mean saliva sHLA-ll levels in MS patients was significantly higher than normal controls (354 +/- 42 unit/mL vs. 222 +/- 18 unit/mL, t= 8.16, p < 0.003). Comparison of saliva sHLA-II values before and after treatment with IFN beta-1a revealed a consistent increase in mean concentration. The increase in saliva sHLA-II values (354 +/- 42 unit/mL at baseline versus 821 +/- 86 unit/mL at 3 months and 776 +/- 63 unit/mL at 6 months, in unit/mL, p < 0.001 for both comparisons) was associated with a stable clinical course and a decline of the number of contrast-enhancing lesions on brain MRI. Comparison of the volume of T2-weighted lesions and the number of black holes on T1-weighted images did not reveal any significant changes (during pre-treatment versus post-treatment month 6) or any correlations with saliva sHLA-II levels. Saliva sHLA-I levels were not detectable. CONCLUSION: Serial measurement of saliva sHLA-II may serve as a potential marker of therapeutic response to IFN beta-1a. Larger clinical studies involving more RRMS patients over longer periods of time are needed to further test the significance and value of saliva sHLA-II as an accurate marker of therapeutic response to beta-interferons. [Abstract/Link to Full Text]

Curros-Criado MM, Herrero JF
The antinociceptive effect of systemic gabapentin is related to the type of sensitization-induced hyperalgesia.
J Neuroinflammation. 2007;415.
BACKGROUND: Gabapentin is a structural analogue of gamma-aminobutyric acid with strong anticonvulsant and analgesic activities. Important discrepancies are observed on the effectiveness and potency of gabapentin in acute nociception and sensitization due to inflammation and neuropathy. There is also some controversy in the literature on whether gabapentin is only active in central areas of the nervous system or is also effective in the periphery. This is probably due to the use of different experimental models, routes of administration and types of sensitization. The aim of the present study was to investigate the influence of the spinal cord sensitization on the antinociceptive activity of gabapentin in the absence and in the presence of monoarthritis and neuropathy, using the same experimental protocol of stimulation and the same technique of evaluation of antinociception. METHODS: We studied the antinociceptive effects of iv. gabapentin in spinal cord neuronal responses from adult male Wistar rats using the recording of single motor units technique. Gabapentin was studied in the absence and in the presence of sensitization due to arthritis and neuropathy, combining noxious mechanical and repetitive electrical stimulation (wind-up). RESULTS: The experiments showed that gabapentin was effective in arthritic (max. effect of 41 +/- 15% of control and ID50 of 1,145 +/- 14 micromol/kg; 200 mg/kg) and neuropathic rats (max. effect of 20 +/- 8% of control and ID50 of 414 +/- 27 micromol/kg; 73 mg/kg) but not in normal rats. The phenomenon of wind-up was dose-dependently reduced by gabapentin in neuropathy but not in normal and arthritic rats. CONCLUSION: We conclude that systemic gabapentin is a potent and effective antinociceptive agent in sensitization caused by arthritis and neuropathy but not in the absence of sensitization. The potency of the antinociception was directly related to the intensity of sensitization in the present experimental conditions. The effect is mainly located in central areas in neuropathy since wind-up was significantly reduced, however, an action on inflammation-induced sensitized nociceptors is also likely. [Abstract/Link to Full Text]

Eltayeb S, Berg AL, Lassmann H, Wallström E, Nilsson M, Olsson T, Ericsson-Dahlstrand A, Sunnemark D
Temporal expression and cellular origin of CC chemokine receptors CCR1, CCR2 and CCR5 in the central nervous system: insight into mechanisms of MOG-induced EAE.
J Neuroinflammation. 2007;414.
BACKGROUND: The CC chemokine receptors CCR1, CCR2 and CCR5 are critical for the recruitment of mononuclear phagocytes to the central nervous system (CNS) in multiple sclerosis (MS) and other neuroinflammatory diseases. Mononuclear phagocytes are effector cells capable of phagocytosing myelin and damaging axons. In this study, we characterize the regional, temporal and cellular expression of CCR1, CCR2 and CCR5 mRNA in the spinal cord of rats with myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis (MOG-EAE). While resembling human MS, this animal model allows unique access to CNS-tissue from various time-points of relapsing neuroinflammation and from various lesional stages: early active, late active, and inactive completely demyelinated lesions. METHODS: The expression of CCR1, CCR2 and CCR5 mRNA was studied with in situ hybridization using radio labelled cRNA probes in combination with immunohistochemical staining for phenotypic cell markers. Spinal cord sections from healthy rats and rats with MOG-EAE (acute phase, remission phase, relapse phase) were analysed. In defined lesion stages, the number of cells expressing CCR1, CCR2 and CCR5 mRNA was determined. Data were statistically analysed by the nonparametric Mann-Whitney U test. RESULTS: In MOG-EAE rats, extensive up-regulation of CCR1 and CCR5 mRNA, and moderate up-regulation of CCR2 mRNA, was found in the spinal cord during episodes of active inflammation and demyelination. Double staining with phenotypic cell markers identified the chemokine receptor mRNA-expressing cells as macrophages/microglia. Expression of all three receptors was substantially reduced during clinical remission, coinciding with diminished inflammation and demyelination in the spinal cord. Healthy control rats did not show any detectable expression of CCR1, CCR2 or CCR5 mRNA in the spinal cord. CONCLUSION: Our results demonstrate that the acute and chronic-relapsing phases of MOG-EAE are associated with distinct expression of CCR1, CCR2, and CCR5 mRNA by cells of the macrophage/microglia lineage within the CNS lesions. These data support the notion that CCR1, CCR2 and CCR5 mediate recruitment of both infiltrating macrophages and resident microglia to sites of CNS inflammation. Detailed knowledge of expression patterns is crucial for the understanding of therapeutic modulation and the validation of CCR1, CCR2 and CCR5 as feasible targets for therapeutic intervention in MS. [Abstract/Link to Full Text]

Leinhase I, Rozanski M, Harhausen D, Thurman JM, Schmidt OI, Hossini AM, Taha ME, Rittirsch D, Ward PA, Holers VM, Ertel W, Stahel PF
Inhibition of the alternative complement activation pathway in traumatic brain injury by a monoclonal anti-factor B antibody: a randomized placebo-controlled study in mice.
J Neuroinflammation. 2007;413.
BACKGROUND: The posttraumatic response to traumatic brain injury (TBI) is characterized, in part, by activation of the innate immune response, including the complement system. We have recently shown that mice devoid of a functional alternative pathway of complement activation (factor B-/- mice) are protected from complement-mediated neuroinflammation and neuropathology after TBI. In the present study, we extrapolated this knowledge from studies in genetically engineered mice to a pharmacological approach using a monoclonal anti-factor B antibody. This neutralizing antibody represents a specific and potent inhibitor of the alternative complement pathway in mice. METHODS: A focal trauma was applied to the left hemisphere of C57BL/6 mice (n = 89) using a standardized electric weight-drop model. Animals were randomly assigned to two treatment groups: (1) Systemic injection of 1 mg monoclonal anti-factor B antibody (mAb 1379) in 400 mul phosphate-buffered saline (PBS) at 1 hour and 24 hours after trauma; (2) Systemic injection of vehicle only (400 mul PBS), as placebo control, at identical time-points after trauma. Sham-operated and untreated mice served as additional negative controls. Evaluation of neurological scores and analysis of brain tissue specimens and serum samples was performed at defined time-points for up to 1 week. Complement activation in serum was assessed by zymosan assay and by murine C5a ELISA. Brain samples were analyzed by immunohistochemistry, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) histochemistry, and real-time RT-PCR. RESULTS: The mAb 1379 leads to a significant inhibition of alternative pathway complement activity and to significantly attenuated C5a levels in serum, as compared to head-injured placebo-treated control mice. TBI induced histomorphological signs of neuroinflammation and neuronal apoptosis in the injured brain hemisphere of placebo-treated control mice for up to 7 days. In contrast, the systemic administration of an inhibitory anti-factor B antibody led to a substantial attenuation of cerebral tissue damage and neuronal cell death. In addition, the posttraumatic administration of the mAb 1379 induced a neuroprotective pattern of intracerebral gene expression. CONCLUSION: Inhibition of the alternative complement pathway by posttraumatic administration of a neutralizing anti-factor B antibody appears to represent a new promising avenue for pharmacological attenuation of the complement-mediated neuroinflammatory response after head injury. [Abstract/Link to Full Text]

Mojsilovic-Petrovic J, Callaghan D, Cui H, Dean C, Stanimirovic DB, Zhang W
Hypoxia-inducible factor-1 (HIF-1) is involved in the regulation of hypoxia-stimulated expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) and MCP-5 (Ccl12) in astrocytes.
J Neuroinflammation. 2007;412.
BACKGROUND: Neuroinflammation has been implicated in various brain pathologies characterized by hypoxia and ischemia. Astroglia play an important role in the initiation and propagation of hypoxia/ischemia-induced inflammation by secreting inflammatory chemokines that attract neutrophils and monocytes into the brain. However, triggers of chemokine up-regulation by hypoxia/ischemia in these cells are poorly understood. Hypoxia-inducible factor-1 (HIF-1) is a dimeric transcriptional factor consisting of HIF-1alpha and HIF-1beta subunits. HIF-1 binds to HIF-1-binding sites in the target genes and activates their transcription. We have recently shown that hypoxia-induced expression of IL-1beta in astrocytes is mediated by HIF-1alpha. In this study, we demonstrate the role of HIF-1alpha in hypoxia-induced up-regulation of inflammatory chemokines, human monocyte chemoattractant protein-1 (MCP-1/CCL2) and mouse MCP-5 (Ccl12), in human and mouse astrocytes, respectively. METHODS: Primary fetal human astrocytes or mouse astrocytes generated from HIF-1alpha+/+ and HIF-1alpha+/- mice were subjected to hypoxia (<2% oxygen) or 125 muM CoCl2 for 4 h and 6 h, respectively. The expression of HIF-1alpha, MCP-1 and MCP-5 was determined by semi-quantitative RT-PCR, western blot or ELISA. The interaction of HIF-1alpha with a HIF-1-binding DNA sequence was examined by EMSA and supershift assay. HIF-1-binding sequence in the promoter of MCP-1 gene was cloned and transcriptional activation of MCP-1 by HIF-1alpha was analyzed by reporter gene assay. RESULTS: Sequence analyses identified HIF-1-binding sites in the promoters of MCP-1 and MCP-5 genes. Both hypoxia and HIF-1alpha inducer, CoCl2, strongly up-regulated HIF-1alpha expression in astrocytes. Mouse HIF-1alpha+/- astrocytes had lower basal levels of HIF-1alpha and MCP-5 expression. The up-regulation of MCP-5 by hypoxia or CoCl2 in HIF-1alpha+/+ and HIF-1alpha+/- astrocytes was correlated with the levels of HIF-1alpha in cells. Both hypoxia and CoCl2 also up-regulated HIF-1alpha and MCP-1 expression in human astrocytes. EMSA assay demonstrated that HIF-1 activated by either hypoxia or CoCl2 binds to wild-type HIF-1-binding DNA sequence, but not the mutant sequence. Furthermore, reporter gene assay demonstrated that hypoxia markedly activated MCP-1 transcription but not the mutated MCP-1 promoter in transfected astrocytes. CONCLUSION: These findings suggest that both MCP-1 and MCP-5 are HIF-1 target genes and that HIF-1alpha is involved in transcriptional induction of these two chemokines in astrocytes by hypoxia. [Abstract/Link to Full Text]

Aravalli RN, Hu S, Lokensgard JR
Toll-like receptor 2 signaling is a mediator of apoptosis in herpes simplex virus-infected microglia.
J Neuroinflammation. 2007;411.
BACKGROUND: Information regarding the response of brain cells to infection with herpes simplex virus (HSV)-1 is needed for a complete understanding of viral neuropathogenesis. We have recently demonstrated that microglial cells respond to HSV infection by producing a number of proinflammatory cytokines and chemokines through a mechanism involving Toll-like receptor 2 (TLR2). Following this cytokine burst, microglial cells rapidly undergo cell death by apoptosis. We hypothesized that TLR2 signaling might mediate the cell death process as well. METHODS: To test this hypothesis, we investigated HSV-induced cell death of microglia obtained from both wild-type and TLR2-/- mice. Cell death was studied by oligonucleosomal ELISA and TUNEL staining, and the mechanisms of apoptosis were further analyzed using murine apoptosis-specific microarrays. The data obtained from microarray analysis were then validated using quantitative real-time PCR assays. RESULTS: HSV infection induced apoptotic cell death in microglial cells from wild-type as well as TLR2 cells. However, the cell death at 24 h p.i. was markedly lower in knockout cells. Furthermore, microarray analyses clearly showed that the expression of pro-apoptotic genes was down-regulated at the time when wild-type cells were actively undergoing apoptosis, indicating a differential response to HSV in cells with or without TLR2. CONCLUSION: We demonstrate here that HSV induces an apoptotic response in microglial cells which is mediated through TLR2 signaling. [Abstract/Link to Full Text]

Esen N, Kielian T
Effects of low dose GM-CSF on microglial inflammatory profiles to diverse pathogen-associated molecular patterns (PAMPs).
J Neuroinflammation. 2007;410.
BACKGROUND: It is well appreciated that obtaining sufficient numbers of primary microglia for in vitro experiments has always been a challenge for scientists studying the biological properties of these cells. Supplementing culture medium with granulocyte-macrophage colony-stimulating factor (GM-CSF) partially alleviates this problem by increasing microglial yield. However, GM-CSF has also been reported to transition microglia into a dendritic cell (DC)-like phenotype and consequently, affect their immune properties. METHODS: Although the concentration of GM-CSF used in our protocol for mouse microglial expansion (0.5 ng/ml) is at least 10-fold less compared to doses reported to affect microglial maturation and function (>/= 5 ng/ml), in this study we compared the responses of microglia derived from mixed glial cultures propagated in the presence/absence of low dose GM-CSF to establish whether this growth factor significantly altered the immune properties of microglia to diverse bacterial stimuli. These stimuli included the gram-positive pathogen Staphylococcus aureus (S. aureus) and its cell wall product peptidoglycan (PGN), a Toll-like receptor 2 (TLR2) agonist; the TLR3 ligand polyinosine-polycytidylic acid (polyI:C), a synthetic mimic of viral double-stranded RNA; lipopolysaccharide (LPS) a TLR4 agonist; and the TLR9 ligand CpG oligonucleotide (CpG-ODN), a synthetic form of bacteria/viral DNA. RESULTS: Interestingly, the relative numbers of microglia recovered from mixed glial cultures following the initial harvest were not influenced by GM-CSF. However, following the second and third collections of the same mixed cultures, the yield of microglia from GM-CSF-supplemented flasks was increased two-fold. Despite the ability of GM-CSF to expand microglial numbers, cells propagated in the presence/absence of GM-CSF demonstrated roughly equivalent responses following S. aureus and PGN stimulation. Specifically, the induction of tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2/CXCL2), and major histocompatibility complex (MHC) class II, CD80, CD86 expression by microglia in response to S. aureus were similar regardless of whether cells had been exposed to GM-CSF during the mixed culture period. In addition, microglial phagocytosis of intact bacteria was unaffected by GM-CSF. In contrast, upon S. aureus stimulation, CD40 expression was induced more prominently in microglia expanded in GM-CSF. Analysis of microglial responses to additional pathogen-associate molecular patterns (PAMPs) revealed that low dose GM-CSF did not significantly alter TNF-alpha or MIP-2 production in response to the TLR3 and TLR4 agonists polyI:C or LPS, respectively; however, cells expanded in the presence of GM-CSF produced lower levels of both mediators following CpG-ODN stimulation. CONCLUSION: We demonstrate that low levels of GM-CSF are sufficient to expand microglial numbers without significantly affecting their immunological responses following activation of TLR2, TLR4 or TLR3 signaling. Therefore, low dose GM-CSF can be considered as a reliable method to achieve higher microglial yields without introducing dramatic activation artifacts. [Abstract/Link to Full Text]

Fendrick SE, Xue QS, Streit WJ
Formation of multinucleated giant cells and microglial degeneration in rats expressing a mutant Cu/Zn superoxide dismutase gene.
J Neuroinflammation. 2007;49.
BACKGROUND: Microglial neuroinflammation is thought to play a role in the pathogenesis of amyotrophic lateral sclerosis (ALS). The purpose of this study was to provide a histopathological evaluation of the microglial neuroinflammatory response in a rodent model of ALS, the SOD1G93A transgenic rat. METHODS: Multiple levels of the CNS from spinal cord to cerebral cortex were studied in SOD1G93A transgenic rats during three stages of natural disease progression, including presymptomatic, early symptomatic (onset), and late symptomatic (end stage), using immuno- and lectin histochemical markers for microglia, such as OX-42, OX-6, and Griffonia simplicifolia isolectin B4. RESULTS: Our studies revealed abnormal aggregates of microglia forming in the spinal cord as early as the presymptomatic stage. During the symptomatic stages there was prominent formation of multinucleated giant cells through fusion of microglial cells in the spinal cord, brainstem, and red nucleus of the midbrain. Other brain regions, including substantia nigra, cranial nerve nuclei, hippocampus and cortex showed normal appearing microglia. In animals during end stage disease at 4-5 months of age virtually all microglia in the spinal cord gray matter showed extensive fragmentation of their cytoplasm (cytorrhexis), indicative of widespread microglial degeneration. Few microglia exhibiting nuclear fragmentation (karyorrhexis) indicative of apoptosis were identified at any stage. CONCLUSION: The current findings demonstrate the occurrence of severe abnormalities in microglia, such as cell fusions and cytorrhexis, which may be the result of expression of mutant SOD1 in these cells. The microglial changes observed are different from those that accompany normal microglial activation, and they demonstrate that aberrant activation and degeneration of microglia is part of the pathogenesis of motor neuron disease. [Abstract/Link to Full Text]

Pugh PL, Vidgeon-Hart MP, Ashmeade T, Culbert AA, Seymour Z, Perren MJ, Joyce F, Bate ST, Babin A, Virley DJ, Richardson JC, Upton N, Sunter D
Repeated administration of the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) modulates neuroinflammation and amyloid plaque load in mice bearing amyloid precursor protein and presenilin-1 mutant transgenes.
J Neuroinflammation. 2007;48.
BACKGROUND: Data indicates anti-oxidant, anti-inflammatory and pro-cognitive properties of noradrenaline and analyses of post-mortem brain of Alzheimer's disease (AD) patients reveal major neuronal loss in the noradrenergic locus coeruleus (LC), the main source of CNS noradrenaline (NA). The LC has projections to brain regions vulnerable to amyloid deposition and lack of LC derived NA could play a role in the progression of neuroinflammation in AD. Previous studies reveal that intraperitoneal (IP) injection of the noradrenergic neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) can modulate neuroinflammation in amyloid over-expressing mice and in one study, DSP-4 exacerbated existing neurodegeneration. METHODS: TASTPM mice over-express human APP and beta amyloid protein and show age related cognitive decline and neuroinflammation. In the present studies, 5 month old C57/BL6 and TASTPM mice were injected once monthly for 6 months with a low dose of DSP-4 (5 mg kg-1) or vehicle. At 8 and 11 months of age, mice were tested for cognitive ability and brains were examined for amyloid load and neuroinflammation. RESULTS: At 8 months of age there was no difference in LC tyrosine hydroxylase (TH) across all groups and cortical NA levels of TASTPM/DSP-4, WT/Vehicle and WT/DSP-4 were similar. NA levels were lowest in TASTPM/Vehicle. Messenger ribonucleic acid (mRNA) for various inflammatory markers were significantly increased in TASTPM/Vehicle compared with WT/Vehicle and by 8 months of age DSP-4 treatment modified this by reducing the levels of some of these markers in TASTPM. TASTPM/Vehicle showed increased astrocytosis and a significantly larger area of cortical amyloid plaque compared with TASTPM/DSP-4. However, by 11 months, NA levels were lowest in TASTPM/DSP-4 and there was a significant reduction in LC TH of TASTPM/DSP-4 only. Both TASTPM groups had comparable levels of amyloid, microglial activation and astrocytosis and mRNA for inflammatory markers was similar except for interleukin-1 beta which was increased by DSP-4. TASTPM mice were cognitively impaired at 8 and 11 months but DSP-4 did not modify this. CONCLUSION: These data reveal that a low dose of DSP-4 can have varied effects on the modulation of amyloid plaque deposition and neuroinflammation in TASTPM mice dependent on the duration of dosing. [Abstract/Link to Full Text]

Ahmed Z, Mackenzie IR, Hutton ML, Dickson DW
Progranulin in frontotemporal lobar degeneration and neuroinflammation.
J Neuroinflammation. 2007;47.
Progranulin (PGRN) is a pleiotropic protein that has gained the attention of the neuroscience community with recent discoveries of mutations in the gene for PGRN that cause frontotemporal lobar degeneration (FTLD). Pathogenic mutations in PGRN result in null alleles, and the disease is likely the result of haploinsufficiency. Little is known about the normal function of PGRN in the central nervous system apart from a role in brain development. It is expressed by microglia and neurons. In the periphery, PGRN is involved in wound repair and inflammation. High PGRN expression has been associated with more aggressive growth of various tumors. The properties of full length PGRN are distinct from those of proteolytically derived peptides, referred to as granulins (GRNs). While PGRN has trophic properties, GRNs are more akin to inflammatory mediators such as cytokines. Loss of the neurotrophic properties of PGRN may play a role in selective neuronal degeneration in FTLD, but neuroinflammation may also be important. Gene expression studies suggest that PGRN is up-regulated in a variety of neuroinflammatory conditions, and increased PGRN expression by microglia may play a pivotal role in the response to brain injury, neuroinflammation and neurodegeneration. [Abstract/Link to Full Text]

Esquifino AI, Cano P, Jimenez-Ortega V, Fernández-Mateos MP, Cardinali DP
Immune response after experimental allergic encephalomyelitis in rats subjected to calorie restriction.
J Neuroinflammation. 2007;46.
Male Lewis rats (6 weeks-old) were submitted to a calorie restriction equivalent to 33% or 66% of food restriction. Fifteen days later, groups of 7 animals were injected with complete Freund's adjuvant plus spinal cord homogenate (SCH) to induce experimental allergic encephalomyelitis (EAE) or with complete Freund's adjuvant alone. EAE was defined solely on clinical grounds. Rats were assessed daily for clinical signs of EAE and were killed on day 15 after immunization. Both diet and SCH injection diminished body weight significantly. In contrast to rats receiving a normal diet or a 33% calorie-restricted diet, rats subjected to severe calorie restriction did not exhibit clinical signs of EAE. Concomitantly with the lack of disease manifestation, 66% of calorie-restricted rats injected with SCH showed significantly less splenic and lymph node mitogenic response to concanavalin A (Con A) and a higher splenic response to lipopolysaccharide. Fewer splenic, lymph node and thymic CD4+ cells, greater numbers of splenic and lymph node CD8+ and CD4+- CD8+ cells, and fewer splenic T, B and T-B cells, and lymph node and thymic B and T-B cells were observed. There was impaired interferon (IFN)-gamma production occurred in the three examined tissues. The results are compatible with the view that the acute phase of EAE can be curtailed by severe calorie restriction, presumably through impaired IFN-gamma production. [Abstract/Link to Full Text]

Bate C, Rumbold L, Williams A
Cholesterol synthesis inhibitors protect against platelet-activating factor-induced neuronal damage.
J Neuroinflammation. 2007;45.
BACKGROUND: Platelet-activating factor (PAF) is implicated in the neuronal damage that accompanies ischemia, prion disease and Alzheimer's disease (AD). Since some epidemiological studies demonstrate that statins, drugs that reduce cholesterol synthesis, have a beneficial effect on mild AD, we examined the effects of two cholesterol synthesis inhibitors on neuronal responses to PAF. METHODS: Primary cortical neurons were treated with cholesterol synthesis inhibitors (simvastatin or squalestatin) prior to incubation with different neurotoxins. The effects of these drugs on neuronal cholesterol levels and neuronal survival were measured. Immunoblots were used to determine the effects of simvastatin or squalestatin on the distribution of the PAF receptor and an enzyme linked immunoassay was used to quantify the amounts of PAF receptor. RESULTS: PAF killed primary neurons in a dose-dependent manner. Pre-treatment with simvastatin or squalestatin reduced neuronal cholesterol and increased the survival of PAF-treated neurons. Neuronal survival was increased 50% by 100 nM simvastatin, or 20 nM squalestatin. The addition of mevalonate restored cholesterol levels, and reversed the protective effect of simvastatin. Simvastatin or squalestatin did not affect the amounts of the PAF receptor but did cause it to disperse from within lipid rafts. CONCLUSION: Treatment of neurons with cholesterol synthesis inhibitors including simvastatin and squalestatin protected neurons against PAF. Treatment caused a percentage of the PAF receptors to disperse from cholesterol-sensitive domains. These results raise the possibility that the effects of statins on neurodegenerative disease are, at least in part, due to desensitisation of neurons to PAF. [Abstract/Link to Full Text]

Lemstra AW, Groen in't Woud JC, Hoozemans JJ, van Haastert ES, Rozemuller AJ, Eikelenboom P, van Gool WA
Microglia activation in sepsis: a case-control study.
J Neuroinflammation. 2007;44.
BACKGROUND: Infection induces an acute phase response that is accompanied by non-specific symptoms collectively named sickness behavior. Recent observations suggest that microglial cells play a role in mediating behavioral changes in systemic infections. In animal models for sepsis it has been shown that after inducing lipopolysaccharide, LPS, microglia in the brain were activated. The aim of this study was to investigate whether activation of microglia can be detected in patients who died of sepsis. METHODS: In a case-control study brain tissue of 13 patients who died with sepsis was compared with that of 17 controls. Activated microglia were identified by expression of MHC-class II antigens and CD68. Microglia activation was analyzed by a semiquantitative score combining both the number of the immunoreactive cells and their morphology. RESULTS: In patients who died with sepsis there was a significant increase in activated microglia in the grey matter when stained with CD68 compared to controls. This effect was independent of the effect of age. CONCLUSION: This study shows for the first time in human brain tissue an association between a systemic infection and activation of microglia in the brain. Activated microglia during sepsis could play a role in behavioral changes associated with systemic infection. [Abstract/Link to Full Text]

Boris M, Kaiser CC, Goldblatt A, Elice MW, Edelson SM, Adams JB, Feinstein DL
Effect of pioglitazone treatment on behavioral symptoms in autistic children.
J Neuroinflammation. 2007;43.
INTRODUCTION: Autism is complex neuro-developmental disorder which has a symptomatic diagnosis in patients characterized by disorders in language/communication, behavior, and social interactions. The exact causes for autism are largely unknown, but is has been speculated that immune and inflammatory responses, particularly those of Th2 type, may be involved. Thiazolidinediones (TZDs) are agonists of the peroxisome proliferator activated receptor gamma (PPARgamma), a nuclear hormone receptor which modulates insulin sensitivity, and have been shown to induce apoptosis in activated T-lymphocytes and exert anti-inflammatory effects in glial cells. The TZD pioglitazone (Actos) is an FDA-approved PPARgamma agonist used to treat type 2 diabetes, with a good safety profile, currently being tested in clinical trials of other neurological diseases including AD and MS. We therefore tested the safety and therapeutic potential of oral pioglitazone in a small cohort of children with diagnosed autism. CASE DESCRIPTION: The rationale and risks of taking pioglitazone were explained to the parents, consent was obtained, and treatment was initiated at either 30 or 60 mg per day p.o. A total of 25 children (average age 7.9 +/- 0.7 year old) were enrolled. Safety was assessed by measurements of metabolic profiles and blood pressure; effects on behavioral symptoms were assessed by the Aberrant Behavior Checklist (ABC), which measures hyperactivity, inappropriate speech, irritability, lethargy, and stereotypy, done at baseline and after 3-4 months of treatment. DISCUSSION AND EVALUATION: In a small cohort of autistic children, daily treatment with 30 or 60 mg p.o. pioglitazone for 3-4 months induced apparent clinical improvement without adverse events. There were no adverse effects noted and behavioral measurements revealed a significant decrease in 4 out of 5 subcategories (irritability, lethargy, stereotypy, and hyperactivity). Improved behaviors were inversely correlated with patient age, indicating stronger effects on the younger patients. CONCLUSION: Pioglitazone should be considered for further testing of therapeutic potential in autistic patients. [Abstract/Link to Full Text]

Jin J, Shie FS, Liu J, Wang Y, Davis J, Schantz AM, Montine KS, Montine TJ, Zhang J
Prostaglandin E2 receptor subtype 2 (EP2) regulates microglial activation and associated neurotoxicity induced by aggregated alpha-synuclein.
J Neuroinflammation. 2007;42.
BACKGROUND: The pathogenesis of idiopathic Parkinson's disease (PD) remains elusive, although evidence has suggested that neuroinflammation characterized by activation of resident microglia in the brain may contribute significantly to neurodegeneration in PD. It has been demonstrated that aggregated alpha-synuclein potently activates microglia and causes neurotoxicity. However, the mechanisms by which aggregated alpha-synuclein activates microglia are not understood fully. METHODS: We investigated the role of prostaglandin E2 receptor subtype 2 (EP2) in alpha-synuclein aggregation-induced microglial activation using ex vivo, in vivo and in vitro experimental systems. RESULTS: Results demonstrated that ablation of EP2(EP2-/-) significantly enhanced microglia-mediated ex vivo clearance of alpha-synuclein aggregates (from mesocortex of Lewy body disease patients) while significantly attenuating neurotoxicity and extent of alpha-synuclein aggregation in mice treated with a parkinsonian toxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Furthermore, we report that reduced neurotoxicity by EP2-/- microglia could be attributed to suppressed translocation of a critical cytoplasmic subunit (p47-phox) of NADPH oxidase (PHOX) to the membranous compartment after exposure to aggregated alpha-synuclein. CONCLUSION: Thus, it appears that microglial EP2 plays a critical role in alpha-synuclein-mediated neurotoxicity. [Abstract/Link to Full Text]

Alique M, Herrero JF, Lucio-Cazana FJ
All-trans retinoic acid induces COX-2 and prostaglandin E2 synthesis in SH-SY5Y human neuroblastoma cells: involvement of retinoic acid receptors and extracellular-regulated kinase 1/2.
J Neuroinflammation. 2007;41.
BACKGROUND: Our recent results show that all-trans retinoic acid (ATRA), an active metabolite of vitamin A, induces COX-dependent hyperalgesia and allodynia in rats. This effect was mediated by retinoic acid receptors (RARs) and was associated with increased COX-2 expression in the spinal cord. Since ATRA also up-regulated COX-2 expression in SH-SY5Y human neuroblastoma cells, the current study was undertaken to analyze in these cells the mechanism through which ATRA increases COX activity. METHODS: Cultured SH-SY5Y neuroblastoma cells were treated with ATRA. COX expression and kinase activity were analyzed by western blot. Transcriptional mechanisms were analyzed by RT-PCR and promoter assays. Pharmacological inhibitors of kinase activity and pan-antagonists of RAR or RXR were used to assess the relevance of these signaling pathways. Production of prostaglandin E2 (PGE2) was quantified by enzyme immunoabsorbent assay. Statistical significance between individual groups was tested using the non-parametric unpaired Mann-Whitney U test. RESULTS: ATRA induced a significant increase of COX-2 expression in a dose- and time-dependent manner in SH-SY5Y human neuroblastoma cells, while COX-1 expression remained unchanged. Morphological features of differentiation were not observed in ATRA-treated cells. Up-regulation of COX-2 protein expression was followed by increased production of PGE2. ATRA also up-regulated COX-2 mRNA expression and increased the activity of a human COX-2 promoter construct. We next explored the participation of RARs and mitogen-activated peptide kinases (MAPK). Pre-incubation of SH-SY5Y human neuroblastoma cells with either RAR-pan-antagonist LE540 or MAP kinase kinase 1 (MEK-1) inhibitor PD98059 resulted in the abolition of ATRA-induced COX-2 promoter activity, COX-2 protein expression and PGE2 production whereas the retinoid X receptor pan-antagonist HX531, the p38 MAPK inhibitor SB203580 or the c-Jun kinase inhibitor SP600125 did not have any effect. The increase in RAR-beta expression and extracellular-regulated kinase 1/2(ERK1/2) phosphorylation in ATRA-incubated cells suggested that RARs and ERK1/2 were in fact activated by ATRA in SH-SY5Y human neuroblastoma cells. CONCLUSION: These results highlight the importance of RAR-dependent and kinase-dependent mechanisms for ATRA-induced COX-2 expression and activity. [Abstract/Link to Full Text]

Lehmann DJ, Barnardo MC, Fuggle S, Quiroga I, Sutherland A, Warden DR, Barnetson L, Horton R, Beck S, Smith AD
Replication of the association of HLA-B7 with Alzheimer's disease: a role for homozygosity?
J Neuroinflammation. 2006;333.
BACKGROUND: There are reasons to expect an association with Alzheimer's disease (AD) within the HLA region. The HLA-B & C genes have, however, been relatively understudied. A geographically specific association with HLA-B7 & HLA-Cw*0702 had been suggested by our previous, small study. METHODS: We studied the HLA-B & C alleles in 196 cases of 'definite' or 'probable' AD and 199 elderly controls of the OPTIMA cohort, the largest full study of these alleles in AD to date. RESULTS: We replicated the association of HLA-B7 with AD (overall, adjusted odds ratio = 2.3, 95% confidence interval = 1.4-3.7, p = 0.001), but not the previously suggested interaction with the epsilon4 allele of apolipoprotein E. Results for HLA-Cw*0702, which is in tight linkage disequilibrium with HLA-B7, were consistent with those for the latter. Homozygotes of both alleles appeared to be at particularly high risk of AD. CONCLUSION: HLA-B7 and HLA-Cw*0702 are associated with AD in the Oxford population. Because of the contradictions between cohorts in our previous study, we suggest that these results may be geographically specific. This might be because of differences between populations in the structure of linkage disequilibrium or in interactions with environmental, genetic or epigenetic factors. A much larger study will be needed to clarify the role of homozygosity of HLA alleles in AD risk. [Abstract/Link to Full Text]


Recent Articles in Journal of Vision

Hermans E, Dubbelman M, van der Heijde R, Heethaar R
The shape of the human lens nucleus with accommodation.
J Vis. 2007;7(10):16.1-10.
Knowledge about geometric properties such as shape and volume and Poisson's ratio of the nucleus can be used in the mechanical and optical modeling of the accommodation process. Therefore, Scheimpflug imaging was used to determine the shape of the human lens nucleus during accommodation in five subjects. To describe the shape of the nucleus, we fitted a parametric model of the cross-sectional geometry to the gradient of the Scheimpflug images using the Hough transform. The geometric model made it possible to estimate the anterior and the posterior central radius, central thickness, equatorial diameter, and cross-sectional area of the nucleus. Assuming that the nucleus is rotationally symmetric, the volume of the nucleus can be estimated by integrating around the circumference. For all five subjects, the results show that during accommodation the nucleus became more convex and that the central thickness increased whereas the equatorial diameter decreased. This decrease in equatorial diameter of the nucleus with accommodation is in accordance with the Helmholtz accommodation theory. Finally, the volume of the nucleus (on average 35 mm(3)) showed no significant change during accommodation in any of the subjects, presumably due to the fact that the human nucleus consists of incompressible material with a Poisson's ratio that is near .5. [Abstract/Link to Full Text]

Bindemann M, Burton AM, Langton SR, Schweinberger SR, Doherty MJ
The control of attention to faces.
J Vis. 2007;7(10):15.1-8.
Humans attend to faces. This study examines the extent to which attention biases to faces are under top-down control. In a visual cueing paradigm, observers responded faster to a target probe appearing in the location of a face cue than of a competing object cue (Experiments 1a and 2a). This effect could be reversed when faces were negatively predictive of the likely target location, making it beneficial to attend to the object cues (Experiments 1b and 2b). It was easier still to strategically shift attention to predictive face cues (Experiment 2c), indicating that the endogenous allocation of attention was augmented here by an additional effect. However, faces merely delayed the voluntary deployment of attention to object cues, but they could not prevent it, even at short cue-target intervals. This finding suggests that attention biases for faces can be rapidly countered by an observer's endogenous control. [Abstract/Link to Full Text]

Huang X, Lu H, Tjan BS, Zhou Y, Liu Z
Motion perceptual learning: when only task-relevant information is learned.
J Vis. 2007;7(10):14.1-10.
The classic view that perceptual learning is information selective and goal directed has been challenged by recent findings showing that subthreshold and task-irrelevant information can induce perceptual learning. This study demonstrates a limit on task-irrelevant learning as exposure to suprathreshold task-irrelevant signals failed to induce perceptual learning. In each trial, two random-dot motion stimuli were presented in a two-alternative forced-choice task. Observers either decided which of the two contained a coherent motion signal (detection task), or whether the coherent motion direction was clockwise or counterclockwise relative to a reference direction (discrimination task). Whereas the exact direction of the coherent motion signal was irrelevant to the detection task, detection of the coherent motion signal was necessary for the discrimination task. We found that the detection trainees improved only their detection but not discrimination sensitivity, whereas the discrimination trainees improved both. Therefore, the importance of task relevance was demonstrated in both detection and discrimination learning. Furthermore, both detection and discrimination training along a single pedestal direction transferred to a broad range of pedestal directions. The profile of the discrimination transfer (as a function of pedestal direction) narrowed for the discrimination trainees. [Abstract/Link to Full Text]

Appelbaum LG, Lu ZL, Sperling G
Contrast amplification in global texture orientation discrimination.
J Vis. 2007;7(10):13.1-19.
We show that adding a low-contrast texture stimulus that is far below its own detection threshold to an ambiguously oriented high-contrast texture can produce an easily perceived global orientation. When such a low-contrast (e.g., 0.1%) test texture and a high-contrast (e.g., 2%) amplifier texture are interleaved, the effective strength for global orientation detection closely approximates the product of the two contrasts. Therefore, adding two ambiguous textures, an amplifier texture at 5x its threshold contrast for global orientation discrimination and a test texture at 1/5x its threshold contrast, produces threshold global orientation discrimination, that is, 5x amplification of the below-threshold test texture. The observed 5x amplification factors are larger than facilitation effects reported in other pattern tasks. Amplification is 11x when orientation discrimination thresholds are compared to absolute detection thresholds. For second-order textures, maximum contrast amplification is about 2.5x. A contrast gain control model is presented that accounts for 90% of the variance in observed d' for texture patterns of differing geometries, exposure durations, and component contrasts. In the model, very low-contrast orientations are represented by power functions of their contrasts, with an exponent greater than two. As the contrast of an amplifier texture increases beyond about 4%, feed-forward gain control exerted by the amplifier ultimately nullifies the amplification effect and produces masking. [Abstract/Link to Full Text]

Thompson B, Hansen BC, Hess RF, Troje NF
Peripheral vision: good for biological motion, bad for signal noise segregation?
J Vis. 2007;7(10):12.1-7.
Biological motion perception, having both evolutionary and social importance, is performed by the human visual system with a high degree of sensitivity. It is unclear whether peripheral vision has access to the specialized neural systems underlying biological motion perception; however, given the motion component, one would expect peripheral vision to be, if not specialized, at least highly accurate in perceiving biological motion. Here we show that the periphery can indeed perceive biological motion. However, the periphery suffers from an inability to detect biological motion signals when they are embedded in dynamic visual noise. We suggest that this peripheral deficit is not due to biological motion perception per se, but to signal/noise segregation. [Abstract/Link to Full Text]

Onat S, Libertus K, König P
Integrating audiovisual information for the control of overt attention.
J Vis. 2007;7(10):11.1-16.
In everyday life, our brains decide about the relevance of huge amounts of sensory input. Further complicating this situation, this input is distributed over different modalities. This raises the question of how different sources of information interact for the control of overt attention during free exploration of the environment under natural conditions. Different modalities may work independently or interact to determine the consequent overt behavior. To answer this question, we presented natural images and lateralized natural sounds in a variety of conditions and we measured the eye movements of human subjects. We show that, in multimodal conditions, fixation probabilities increase on the side of the image where the sound originates showing that, at a coarser scale, lateralized auditory stimulation topographically increases the salience of the visual field. However, this shift of attention is specific because the probability of fixation of a given location on the side of the sound scales with the saliency of the visual stimulus, meaning that the selection of fixation points during multimodal conditions is dependent on the saliencies of both auditory and visual stimuli. Further analysis shows that a linear combination of both unimodal saliencies provides a good model for this integration process, which is optimal according to information-theoretical criteria. Our results support a functional joint saliency map, which integrates different unimodal saliencies before any decision is taken about the subsequent fixation point. These results provide guidelines for the performance and architecture of any model of overt attention that deals with more than one modality. [Abstract/Link to Full Text]

Bulakowski PF, Bressler DW, Whitney D
Shared attentional resources for global and local motion processing.
J Vis. 2007;7(10):10.1-10.
One of the most important aspects of visual attention is its flexibility; our attentional "window" can be tuned to different spatial scales, allowing us to perceive large-scale global patterns and local features effortlessly. We investigated whether the perception of global and local motion competes for a common attentional resource. Subjects viewed arrays of individual moving Gabors that group to produce a global motion percept when subjects attended globally. When subjects attended locally, on the other hand, they could identify the direction of individual uncrowded Gabors. Subjects were required to devote their attention toward either scale of motion or divide it between global and local scales. We measured direction discrimination as a function of the validity of a precue, which was varied in opposite directions for global and local motion such that when the precue was valid for global motion, it was invalid for local motion and vice versa. There was a trade-off between global and local motion thresholds, such that increasing the validity of precues at one spatial scale simultaneously reduced thresholds at that spatial scale but increased thresholds at the other spatial scale. In a second experiment, we found a similar pattern of results for static-oriented Gabors: Attending to local orientation information impaired the subjects' ability to perceive globally defined orientation and vice versa. Thresholds were higher for orientation compared to motion, however, suggesting that motion discrimination in the first experiment was not driven by orientation information alone but by motion-specific processing. The results of these experiments demonstrate that a shared attentional resource flexibly moves between different spatial scales and allows for the perception of both local and global image features, whether these features are defined by motion or orientation. [Abstract/Link to Full Text]

Chen L, Artal P, Gutierrez D, Williams DR
Neural compensation for the best aberration correction.
J Vis. 2007;7(10):9.1-9.
We use adaptive optics (AO) to study whether neural adaptation influences the amount of higher order aberration correction that produces the best subjective image quality. Three subjects performed two tasks, method of adjustment and matching, while viewing a monochromatic stimulus through the Rochester AO system. In both tasks, after correcting the subject's lower order aberrations with trial lenses, AO was used to modify the subject's higher order aberrations, multiplying it by a scaling factor between 1 and -1. In the adjustment task, subjects adjusted the scaling factor to find the best subjective image quality. In the matching task, subjects viewed the same stimulus sequentially blurred either by defocus or a scaled version of their own wave aberration, adjusting the defocus to match the blur corresponding to different scaled versions of their aberrations. Results from both tasks are consistent with a small amount of neural adaptation because the best subjective image quality occurred when some higher order aberrations were left uncorrected for all three subjects. Neural adaptation slightly modifies the best aberration correction, although this effect averaged only approximately 12% of complete adaptation. These results may have practical consequences for customized vision correction. [Abstract/Link to Full Text]

Chappell M
Mapping a field of suppression surrounding visual stimuli.
J Vis. 2007;7(10):8.1-14.
The brightness of a small incremental flash was found to be considerably suppressed in the vicinity of a moving visual stimulus (effect size, d, up to 6) and less so around a stationary stimulus. The pattern of suppression was mapped and extended 3.5 degrees away from a stationary stimulus and 10.5 degrees behind, and ahead of, a moving stimulus. A second experiment found that dark flashes appeared less dark in the presence of an inducing stimulus of either polarity. Combined results suggest that perceived contrast was being suppressed, in all cases by an inducing stimulus of lesser contrast, and in most cases by an inducing stimulus of lesser luminance. These findings were compared with a number of recent models of the perception of the position of moving visual stimuli. These assume that in the wake of such a stimulus, at certain retinal or cortical areas, there is a region of neural inhibition and that, preceding them, there is a (bow-wave-like) region of neural excitation. The current findings confirm the inhibitory, but not the excitatory, assumptions in these theories. [Abstract/Link to Full Text]

Rolfs M, Vitu F
On the limited role of target onset in the gap task: support for the motor-preparation hypothesis.
J Vis. 2007;7(10):7.1-20.
Saccade latency is reduced when the fixation stimulus is removed shortly before a saccade target appears (gap task) as compared to when the fixation stimulus remains present (overlap task). To test the assumption that this gap effect benefits from advanced motor preparation (M. Paré & D. P. Munoz, 1996), we manipulated target onset independently of the signal to launch a saccade (peripheral offset at the mirror location). In Experiment 1, we showed that, when the target appears at one of only two possible locations, target onset strongly improves performance (lower latency, higher accuracy) in the overlap task but not in the gap task. In Experiment 2, we found that the lack of an effect of target onset in the gap task was not due to inhibition of a reflexive response to the transient associated with the offset (go signal) in our task. In Experiment 3, we manipulated target onset and target uncertainty (two, four, or eight potential target locations) in gap and overlap tasks. As target uncertainty increased, the gap effect decreased, and the effect of target onset on saccade latency in the gap condition became greater. Overall, our results suggest, in line with the motor-preparation hypothesis, that saccade metrics in a gap task are computed before the target is actually displayed and that advanced motor preparation is enhanced when the location of the target is predictable. Analyses of anticipations and regular-latency errors corroborated this view. [Abstract/Link to Full Text]

Einhäuser W, Mundhenk TN, Baldi P, Koch C, Itti L
A bottom-up model of spatial attention predicts human error patterns in rapid scene recognition.
J Vis. 2007;7(10):6.1-13.
Humans demonstrate a peculiar ability to detect complex targets in rapidly presented natural scenes. Recent studies suggest that (nearly) no focal attention is required for overall performance in such tasks. Little is known, however, of how detection performance varies from trial to trial and which stages in the processing hierarchy limit performance: bottom-up visual processing (attentional selection and/or recognition) or top-down factors (e.g., decision-making, memory, or alertness fluctuations)? To investigate the relative contribution of these factors, eight human observers performed an animal detection task in natural scenes presented at 20 Hz. Trial-by-trial performance was highly consistent across observers, far exceeding the prediction of independent errors. This consistency demonstrates that performance is not primarily limited by idiosyncratic factors but by visual processing. Two statistical stimulus properties, contrast variation in the target image and the information-theoretical measure of "surprise" in adjacent images, predict performance on a trial-by-trial basis. These measures are tightly related to spatial attention, demonstrating that spatial attention and rapid target detection share common mechanisms. To isolate the causal contribution of the surprise measure, eight additional observers performed the animal detection task in sequences that were reordered versions of those all subjects had correctly recognized in the first experiment. Reordering increased surprise before and/or after the target while keeping the target and distractors themselves unchanged. Surprise enhancement impaired target detection in all observers. Consequently, and contrary to several previously published findings, our results demonstrate that attentional limitations, rather than target recognition alone, affect the detection of targets in rapidly presented visual sequences. [Abstract/Link to Full Text]

Pastukhov A, Braun J
Perceptual reversals need no prompting by attention.
J Vis. 2007;7(10):5.1-17.
Many ambiguous patterns elicit spontaneous alternations of phenomenal appearance. Attention is known to influence these phenomenal reversals, as do several other factors. We asked whether a shift of attention individually prompts each reversal of phenomenal appearance. By combining intermittent presentation with a proven method of attention control, we monitored phenomenal alternations in the complete absence of attention shifts. We found that reversals become less frequent but continue even when observers neither report on nor shift attention to an ambiguous pattern. The statistical variability of reversals remains unaffected. We conclude that reversals of phenomenal appearance are not prompted externally by attention shifts, but internally by an intrinsic instability of the neural representation of ambiguous patterns. [Abstract/Link to Full Text]

Schreiber KM, Schor CM
A virtual ophthalmotrope illustrating oculomotor coordinate systems and retinal projection geometry.
J Vis. 2007;7(10):4.1-14.
Eye movements are kinematically complex. Even when only the rotational component is considered, the noncommutativity of 3D rotations makes it hard to develop good intuitive understanding of the geometric properties of eye movements and their influence on monocular and binocular vision. The use of at least three major mathematical systems for describing eye positions adds to these difficulties. Traditionally, ophthalmotropes have been used to visualize oculomotor kinematics. Here, we present a virtual ophthalmotrope that is designed to illustrate Helmholtz, Fick, and rotation vector coordinates, as well as Listing's extended law (L2), which is generalized to account for torsion with free changing vergence. The virtual ophthalmotrope shows the influence of these oculomotor patterns on retinal projection geometry. [Abstract/Link to Full Text]

Stirk JA, Underwood G
Low-level visual saliency does not predict change detection in natural scenes.
J Vis. 2007;7(10):3.1-10.
Saliency models of eye guidance during scene perception suggest that attention is drawn to visually conspicuous areas having high visual salience. Despite such low-level visual processes controlling the allocation of attention, higher level information gained from scene knowledge may also control eye movements. This is supported by the findings of eye-tracking studies demonstrating that scene-inconsistent objects are often fixated earlier than their consistent counterparts. Using a change blindness paradigm, changes were made to objects that were either consistent or inconsistent with the scene and that had been measured as having high or low visual salience (according to objective measurements). Results showed that change detection speed and accuracy for objects with high visual salience did not differ from those having low visual salience. However, changes in scene-inconsistent objects were detected faster and with higher accuracy than those in scene-consistent objects for both high and low visually salient objects. We conclude that the scene-inconsistent change detection advantage is a true top-down effect and is not confounded by low-level visual factors and may indeed override such factors when viewing complex naturalistic scenes. [Abstract/Link to Full Text]

Xuan B, Zhang D, He S, Chen X
Larger stimuli are judged to last longer.
J Vis. 2007;7(10):2.1-5.
Representing magnitude information in various dimensions, including space, quantity, and time, is an important function of the human brain. Many previous studies reported that numerical and spatial magnitudes could be mutually influenced through a "mental number line". In this study, we address the question of whether magnitudes in nontemporal dimensions and magnitudes in time are represented independently or not. Observers judged the duration of the stimuli while four types of nontemporal magnitude information, including number of dots, size of open squares, luminance of solid squares, and numeric value of digits, were manipulated in Stroop-like paradigms. Results revealed that stimuli with larger magnitudes in these nontemporal dimensions were judged to be temporally longer. This observation supports the idea that magnitudes in temporal and nontemporal dimensions are not independent and implies the existence of generalized and abstract components in the magnitude representations. [Abstract/Link to Full Text]

Schoonveld W, Shimozaki SS, Eckstein MP
Optimal observer model of single-fixation oddity search predicts a shallow set-size function.
J Vis. 2007;7(10):1.1-16.
A common finding in oddity search, a search in which the target is unknown but defined to be different from the distractors, is that human performance remains insensitive or even improves with number of distractors (set size). A number of explanations based on perceptual and attentional mechanisms have been proposed to explain the anomalous set-size effect. Here, we consider whether the shallower set-size function for oddity search could be explained by stimulus information and task demands. We developed an ideal-observer and a difference-coding (standard-deviation) model for single-fixation oddity search and compared it to the ideal observer in the standard target-known search as well as to human performance in both search tasks. Performance for the ideal and difference-coding model in the oddity search resulted in a shallower set-size function than the target-known ideal observer and was a good predictor of human search accuracy. However, the ideal-observer model was a better predictor than the standard-deviation model for 10 of the 12 data sets. The results highlight the importance of using ideal-observer analysis to separate contributions to human performance arising from perceptual/attentional mechanisms inherent to the human brain from those contributions arising from differences in stimulus information associated with the tasks. [Abstract/Link to Full Text]

Koene A, Arnold D, Johnston A
Bimodal sensory discrimination is finer than dual single modality discrimination.
J Vis. 2007;7(11):14.1-11.
Here we show that discriminating between different signal modulation rates can be easier when stimuli are presented in two modalities (vision and audition) rather than just one. This was true even when the single modality signal was repeated. This facilitation did not require simultaneous presentations in both modalities and therefore cannot rely on sensory fusion. Signal detection threshold for bimodal signals and double single modality signals were found to be equivalent indicating that the double single modality signals were not intrinsically noisier. The lack of facilitation in double single modality conditions was not due to inaccessibility of the first sample because there is no performance difference when noise was added to either the first or second samples. We propose that the bimodal signal discrimination advantage arises from fluctuations in the magnitude of sensory noise over time and because observers select the most reliable modality on a trial by trial basis. Noise levels within repeated single modality trials are more likely to be similar than those within signals from different modalities. As a consequence, signal selection would be less effective in the former circumstances. Overall, our findings illustrate the advantage of using separate sensory channels to achieve reliable information processing. [Abstract/Link to Full Text]

Bex PJ, Mareschal I, Dakin SC
Contrast gain control in natural scenes.
J Vis. 2007;7(11):12.1-12.
Behavioral and electrophysiological studies of visual processing routinely employ sine wave grating stimuli, an approach that has led to the development of models in which the first stage of cortical visual processing acts as a bank of narrowband local filters whose responses vary with the contrast of preferred structure falling within their receptive fields. The relevance of this approach to natural vision is currently being challenged. We examine the contrast response of the human visual system to natural scenes. The results support a narrowband approach to visual processing but require its elaboration. Unlike grating patterns, the contrast response to natural scenes depends on the phase structure at remote spatial scales, but over a limited spatial region. The results suggest that contrast gain control acts within, but not across, cortical hypercolumns and serves to reduce the difference between the responses of detectors in regions of high and low contrast. This process tends to normalize the response of the visual system across natural scenes, which contain uneven contrast distributions. [Abstract/Link to Full Text]

Adams WJ
A common light-prior for visual search, shape, and reflectance judgments.
J Vis. 2007;7(11):11.1-7.
The "light-from-above" prior is invoked to simplify and expedite complex visual processing. This prior is observed in visual search and shape judgments with shaded stimuli, where perceived shape and ease of target identification are both affected by stimulus orientation. In addition, perceived surface reflectance varies with surface orientation in a manner consistent with assumed overhead lighting. Do the light-priors exhibited by these different tasks have the same underlying mechanism or even lighting direction? Some evidence has suggested that an "above-left" rather than "above" prior guides behavior in some tasks, but not others. In the current study, the "light-from-above" prior was measured using visual search, shape perception, and a novel reflectance-judgment task. There were substantial differences between observers. However, strong positive correlations were found between the light-priors measured using all three tasks. The data imply that a single mechanism is responsible for a light-from-above prior in "quick and dirty" visual search behavior, shape perception, and reflectance judgments. Furthermore, the data support the notion that perceived shape is the preattentive feature in visual search with shaded targets. [Abstract/Link to Full Text]

Miller JM
Understanding and misunderstanding extraocular muscle pulleys.
J Vis. 2007;7(11):10.1-15.
As evidence has mounted for the critical role of extraocular muscle (EOM) pulleys in normal ocular motility and disease, opposition to the notion has grown more strident. We review the stages through which pulley theory has developed, distinguishing passive, coordinated, weak differential, and strong differential pulley theories and focusing on points of controversy. There is overwhelming evidence that much of the eye's kinematics, once thought to require brainstem coordination of EOM innervations, is determined by orbital biomechanics. The main criticisms of pulley theory only apply to the strong differential theory, abandoned in 2002. Critiques of the notion of dual EOM insertions are shown to be mistaken. The role of smooth muscle and the issue of rotational noncommutativity are clarified. We discuss how pulley sleeves can be stabilized as required by the theory, noting that more work needs to be done in specifying the tissues involved. [Abstract/Link to Full Text]

Walther DB, Fei-Fei L
Task-set switching with natural scenes: measuring the cost of deploying top-down attention.
J Vis. 2007;7(11):9.1-12.
In many everyday situations, we bias our perception from the top down, based on a task or an agenda. Frequently, this entails shifting attention to a specific attribute of a particular object or scene. To explore the cost of shifting top-down attention to a different stimulus attribute, we adopt the task-set switching paradigm, in which switch trials are contrasted with repeat trials in mixed-task blocks and with single-task blocks. Using two tasks that relate to the content of a natural scene in a gray-level photograph and two tasks that relate to the color of the frame around the image, we were able to distinguish switch costs with and without shifts of attention. We found a significant cost in reaction time of 23-31 ms for switches that require shifting attention to other stimulus attributes, but no significant switch cost for switching the task set within an attribute. We conclude that deploying top-down attention to a different attribute incurs a significant cost in reaction time, but that biasing to a different feature value within the same stimulus attribute is effortless. [Abstract/Link to Full Text]

Bours RJ, Kroes MC, Lankheet MJ
The parallel between reverse-phi and motion aftereffects.
J Vis. 2007;7(11):8.1-10.
Periodically flipping the contrast of a moving pattern causes a reversal of the perceived direction of motion. This direction reversal, known as reverse-phi motion, has been generally explained with the notion that flipping contrasts actually shifted the balance of motion energy toward the opposite direction. In this sense, the reversal is trivial because any suitable motion energy detector would be optimally excited in a direction opposite to that for regular motion. This notion, however, does not address the question how these two types of motion are initially detected. Here we show several perceptual phenomena indicating that low-level detection of the two types of motion is quite different. Reverse-phi motion percepts in many respects behave more like motion aftereffects than like regular motion. Motion adaptation causes reduced activity during a stationary test stimulus, which by means of directional opponency leads to motion perceived in the opposite direction. Our findings suggest that reverse-phi motion similarly reduces the activity of low-level motion detectors. [Abstract/Link to Full Text]

Qiu Z, Xu P, Zhou Y, Lu ZL
Spatial vision deficit underlies poor sine-wave motion direction discrimination in anisometropic amblyopia.
J Vis. 2007;7(11):7.1-16.
For five anisometropic amblyopes and five normal controls, contrast sensitivities in both grating motion direction discrimination and moving grating detection were measured with the same moving sine-wave stimuli over a wide range of spatial and temporal frequencies. We found that the apparent local motion deficits in anisometropic amblyopia can be almost completely accounted for by deficits in moving grating detection. Furthermore, the differences between the amblyopic and the nonamblyopic eyes are nonspecific to temporal frequency in both motion direction discrimination and moving grating detection and are quantitatively identical to the differences in their contrast sensitivities. The observations on motion direction discrimination and its relationship to the contrast sensitivity function were replicated with an additional five anisometropic amblyopes and four normal controls. Complementing an earlier study on strabismic amblyopia (R. F. Hess & S. J. Anderson, 1993), these results suggest that local motion-sensitive mechanisms are largely intact in anisometropic amblyopia; the apparent local motion deficits in anisometropic amblyopia can be modeled with deficits in contrast sensitivity functions. [Abstract/Link to Full Text]

Huang PC, Mullen KT, Hess RF
Collinear facilitation in color vision.
J Vis. 2007;7(11):6.1-14.
The detection of a luminance-defined Gabor is improved by two high contrast, aligned, flanking Gabors, an effect termed collinear facilitation. We investigate whether this facilitation also occurs for isoluminant chromatic stimuli, and whether it can occur for chromatic targets with luminance flanks and vice versa. We measured collinear facilitation for Gabor stimuli (0.75 cpd, 1 octave bandwidth) of three different contrast types: achromatic, red-green that isolates the L/M-cone opponent mechanism, and blue-yellow that isolates the S-cone opponent mechanism. Three conditions were investigated: (1) target and flanks all of the same contrast type and spatial phase; (2) target and flanks of the same contrast type but opposite phases (0 degrees and 180 degrees ); and (3) target and flanks of different contrast types (chromatic with achromatic contrast) and two opposite phase combinations. We find that a similar degree of collinear facilitation occurs for the isoluminant chromatic stimuli as for the achromatic stimuli, and all exhibit phase dependency. Facilitation did not occur, however, between chromatic and achromatic target and flanking stimuli. This suggests that at the level of collinear facilitation, the chromatic and the achromatic postreceptoral mechanisms have their own spatial interactions that are segregated from one another. [Abstract/Link to Full Text]

Anton-Erxleben K, Henrich C, Treue S
Attention changes perceived size of moving visual patterns.
J Vis. 2007;7(11):5.1-9.
Spatial attention shifts receptive fields in monkey extrastriate visual cortex toward the focus of attention (S. Ben Hamed, J. R. Duhamel, F. Bremmer, & W. Graf, 2002; C. E. Connor, J. L. Gallant, D. C. Preddie, & D. C. Van Essen, 1996; C. E. Connor, D. C. Preddie, J. L. Gallant, & D. C. Van Essen, 1997; T. Womelsdorf, K. Anton-Erxleben, F. Pieper, & S. Treue, 2006). This distortion in the retinotopic distribution of receptive fields might cause distortions in spatial perception such as an increase of the perceived size of attended stimuli. Here we test for such an effect in human subjects by measuring the point of subjective equality (PSE) for the perceived size of a neutral and an attended stimulus when drawing automatic attention to one of two spatial locations. We found a significant increase in perceived size of attended stimuli. Depending on the absolute stimulus size, this effect ranged from 4% to 12% and was more pronounced for smaller than for larger stimuli. In our experimental design, an attentional effect on task difficulty or a cue bias might influence the PSE measure. We performed control experiments and indeed found such effects, but they could only account for part of the observed results. Our findings demonstrate that the allocation of transient spatial attention onto a visual stimulus increases its perceived size and additionally biases subjects to select this stimulus for a perceptual judgment. [Abstract/Link to Full Text]

Candy TR, Bharadwaj SR
The stability of steady state accommodation in human infants.
J Vis. 2007;7(11):4.1-16.
Retinal image quality in infants is largely determined by the accuracy and the stability of their accommodative responses. Although the accuracy of infants' accommodation has been investigated previously, little is known about the stability of their responses. We performed two experiments that characterized the stability of infants' steady state accommodation. Analyses were performed in the time domain (root mean square [RMS] deviation) and in the frequency domain (spectral analysis). In Experiment 1, accommodation responses were recorded for a period of 3 s from the left eye of four groups of infants (8-10, 11-13, 14-19, and 20-30 weeks of age) and eight prepresbyopic adults while they focused on a small toy placed at a dioptric viewing distance of 1.0 D (at 1 m). In Experiment 2, accommodation responses were recorded for a period of 14 s from the left eye of a group of 8- to 12-week-old infants and six prepresbyopic adults while they focused on a cartoon image placed at three different dioptric viewing distances (1.25, 2.0, and 3.0 D). The data, collected using a photorefractor sampling at 25 Hz, showed two important characteristics. First, the RMS deviations and the power were quantitatively similar across different infant age groups, and they were significantly larger in infants than in adults. Second, the overall and relative power also increased with the dioptric viewing distance both in infants and adults. At all three dioptric viewing distances, the measures of power were larger in infants than in adults. These data demonstrate that infants' accommodative responses contain instabilities that are qualitatively very similar to those observed in adults. However, the larger RMS deviations suggest that infants are likely to experience larger fluctuations in retinal image quality than adults. [Abstract/Link to Full Text]

Watanabe J, Nishida S
Veridical perception of moving colors by trajectory integration of input signals.
J Vis. 2007;7(11):3.1-16.
For rapid alternations of two colors (e.g., red and green), human observers see the mixed color (yellow). This chromatic flicker fusion has been considered to reflect neural integration of color signals presented successively at the same retinal location. If so, the retinal alternation rate should be a critical fusion parameter. However, here we show that temporal alternations of two colors on the retina are perceptually segregated more veridically when they are presented as moving patterns rather than as stationary alternations at the same rate. This finding is consistent with the hypothesis that the visual system integrates color signals along the motion trajectory, in addition to at the same retinal location, for reducing motion blur and seeing veridical colors of moving objects. This hypothesis is further supported by a covariation of perceived motion direction and perceived color in a multipath motion display. [Abstract/Link to Full Text]

Warren PA, Rushton SK
Perception of object trajectory: parsing retinal motion into self and object movement components.
J Vis. 2007;7(11):2.1-11.
A moving observer needs to be able to estimate the trajectory of other objects moving in the scene. Without the ability to do so, it would be difficult to avoid obstacles or catch a ball. We hypothesized that neural mechanisms sensitive to the patterns of motion generated on the retina during self-movement (optic flow) play a key role in this process, "parsing" motion due to self-movement from that due to object movement. We investigated this "flow parsing" hypothesis by measuring the perceived trajectory of a moving probe placed within a flow field that was consistent with movement of the observer. In the first experiment, the flow field was consistent with an eye rotation; in the second experiment, it was consistent with a lateral translation of the eyes. We manipulated the distance of the probe in both experiments and assessed the consequences. As predicted by the flow parsing hypothesis, manipulating the distance of the probe had differing effects on the perceived trajectory of the probe in the two experiments. The results were consistent with the scene geometry and the type of simulated self-movement. In a third experiment, we explored the contribution of local and global motion processing to the results of the first two experiments. The data suggest that the parsing process involves global motion processing, not just local motion contrast. The findings of this study support a role for optic flow processing in the perception of object movement during self-movement. [Abstract/Link to Full Text]

Belaidi A, Pierscionek BK
Modeling internal stress distributions in the human lens: can opponent theories coexist?
J Vis. 2007;7(11):1.1-12.
The effects of material properties and equatorial stretching forces on the stress distribution and shape profile of human lenses were investigated to see whether support could be found for either or both current theories of accommodation. Finite element analysis was used to create models using shape parameters and material properties from published data. Models were constructed for two lenses of different ages. Material properties were varied to show differences between models with a single elastic modulus and those with different moduli for the cortex and the nucleus. Two levels of stretching forces were applied at the equator. Comparisons between experimental and model profiles were made, and stress distribution patterns were constructed. In all models, stretching produces a flattening in the peripheral curvature of the lens. In the younger lens, model and experimental results show that central curvature at some points is steeper for stretched than for unstretched profiles. In the older lens, gradients are flatter at all central points for stretched model and experimental profiles compared to the unstretched profile. In all models, there is a region of higher stress distribution within the lens that corresponds with the position of an inflection point that appears on the anterior surface and, in the older lens, also on the posterior surface. The results show that equatorial stretching forces can produce shape changes in support of both current theories of accommodation depending on the lens age, shape, and applied force. [Abstract/Link to Full Text]

May KA, Hess RF
Dynamics of snakes and ladders.
J Vis. 2007;7(12):13.1-9.
D. J. Field, A. Hayes, and R. F. Hess (1993) introduced two types of stimulus to study the perceptual integration of contours. Both types of stimulus consist of a smooth path of spatially separate elements, embedded in a field of randomly oriented elements. In one type of stimulus ("snakes"), the elements form tangents to the path of the contour; in the other type ("ladders"), the elements are orthogonal to the path. Little is currently known about the relative integration speeds of these two types of contour. We investigated this issue by temporally modulating the orientations of the contour elements. Our results suggest that snakes and ladders are integrated at similar speeds. [Abstract/Link to Full Text]